3.2 The spatial oscillator

In the chapter on mesons, we already mentioned that the three-dimensional oscillator is solvable and may serve as a convenient basis for other potentials. The scale-independent part h3 of the Hamiltonian

                         ---         ---
     P 2    1         1∘  K      1 ∘  K
H =  ----+  -KR  2 =  -- ---h3 = --  ---[− Δ + r 2] ,
     2M     2         2  M       2   M
(3.6)

can be written

h3 = h1(x) + h1(y) + h1(z) ,
(3.7)

resulting in eigenvalues

ϵ  = 3 + 2N,   N  = 0,1...
 N
(3.8)

with eigenspaces of dimension

 (3)   (N--+-1)(N-+--2)
dN  =         2        ,
(3.9)

which have a possible basis

Ψnxnynz(r) = ϕnx (x )ϕny(y)ϕnz(z) .
(3.10)

An alternative approach consists of using spherical coordinates, as in Section 2.1. This provides a new labelling of the eigenvalues

ϵ   = 3 + 4n + 2l .
 n,l
(3.11)

Here l is the orbital momentum and n is the number of nodes of the reduced radial wave function un,l(r), whose expression is

         ∘ -------------
                                       1
un,l(r) =   -----2n!---- rl+1Ll+n1∕2(r2)e−2r2 ,
           Γ (n + l + 32)
(3.12)

where L is a Laguerre polynomial

  α      ∑n  -------Γ (n-+-α-+-1)-------(−-x)m-
L n(x) =     Γ (n −  m + 1)Γ (α + m + 1 )  m!
         m=0
(3.13)

whose generating function is

                (  xy  )    ∑∞
(1 − y)−α −1exp   ------ =     ynL αn(x ) .
                  y − 1     n=0
(3.14)

One may notice the useful relations

[                 ]             √ -------
   -d-−  l +-1-+ r un+1,l(r ) = −  4n + 4 un,l+1(r) ,
   dr      r
[   d    l + 1    ]             √ -------
 − ---−  -----+  r un,l+1 (r ) = −  4n + 4 un+1,l(r) ,
[  dr      r      ]
   -d-   l +-1                  √ -----------
   dr −    r  −  r un,l  (r ) = −  4n + 4l + 6un,l+1(r) ,
[                 ]
 − -d-−  l +-1-− r u     (r ) = − √4n-+-4l-+-6u     (r) ,
   dr      r        n,l+1                       n,l+1
(3.15)

and the useful integral

∫∞              Γ ( 3+ l + β)
  u20,l(r )rβdr =  ---2-3----2--.
                  Γ (2 + l)
0
(3.16)

We have here a first example where levels are described in two different bases, namely nx,ny,nz or n,l,m, with the restriction N = nx + ny + nz = 2n + l.