6.2 Solving the Faddeev equation

Since there are several ways of building a state of given total angular momentum J by combining the angular momenta lρ(a) and lλ(b), let us introduce the normalized harmonics

  M     ˆ    ∑       ′   ′         a′    b′ ˆ
Y a,b,J(ˆρ,λ ) =    ⟨a,a ;b,b  | J,M ⟩Y a (ˆρ)Yb (λ ) ,
              a′,b′
(6.6)

and the partial-wave expansion

           ∑   ϕ  (ρ,λ)
Ψ3 (ρ, λ) =     -ab------YMa,b,J(ˆρ,ˆλ) .
            a,b    ρλ
(6.7)

The projection of the Noyes–Faddeev equation (6.5) gives

        [                                        ]
     -1  -∂2-   ∂2--   a(a +-1)   b(b +-1)
E  + m   ∂ρ2 +  ∂λ2 −    ρ2    −    λ2    − V (ρ)  ϕab(ρ, λ)
              ∫ +1
          ∑         J                  (1)  (1)
   = V (ρ)     − 1 ha,b;a′,b′(ρ,λ,u)ϕa′b′(ρ   ,λ  )du .
          a′,b′
(6.8)

Here we notice that the P and P terms give the same contribution. For computing the kernel h, we introduce the rotated coordinates ρ(1), λ(1) and the angular variables u and u(1) given by

λ (1) + iρ(1) = j (λ + iρ ) ,  λ ⋅ ρ = λ ρu , λ (1) ⋅ ρ (1) = λ(1)ρ(1)u(1) ,
(6.9)

so that

∫          [          ]∗                   ∫+1ρ(1)λ(1)
   d2ˆρ2d2ˆλ  YMa,b,J(ˆρ,ˆλ)  YMa′,b′,J (ρˆ(1),ˆλ(1)) =    -------hJa,b;a′,b′(ρ,λ,u )du .
                                                ρ λ
                                           −1
(6.10)

Explicit expressions for h exist in the literature [64]. For the J = 0 case, h is simply given by

                  √-------√ ------
h0a,b;a′,b′ = --ρλ--- 2a +  1  2b + 1 δabδa′b′Pa(u)Pa ′(u(1)) ,
           ρ(1)λ(1)
(6.11)

where Pn is a Legendre polynomial.