The Nearby Supernova Factory Integral field spectrophotometry

Yannick Copin – Institut de Physique Nucléaire de Lyon – Université de Lyon

Outline of the presentation

Cosmology with SNe Ia

- Concordance cosmology
- SNe Ia as standard candles
- The SNfactory project
- •3D spectro-photometry
 - Point source extraction
 - Flux calibration

SNfactory results

- Photometric accuracy
- SNf sample
- Science with SNf
 - Spectral studies
 - Local host studies
- Conclusions

Part I

Observational cosmology using supernovæ of type la

The concordance cosmology

What is the content of the Universe?

Friedmann equation:

 $\Omega_{tot} = \Sigma_i \ \Omega_i = 1 + kc^2/H_0^2 = 1 - \Omega_k$

- Cosmological probes
 - Angular correlations: CMB, BAO
 - Large scale structures (clusters, lensing)
 - Expansion history: SNe la

Concordance: ACDM

- $\Omega_{\rm tot} \sim 1.00 \pm 0.02$
 - ► Euclidian Universe (k=0)
- $\Omega_{\Lambda} \sim 0.70 \pm 0.03 (w = -1.03 \pm 0.06)$
 - Dark energy dominated

•
$$\Omega_{\rm M} \sim 0.30 \pm 0.03 > \Omega_{\rm baryon} \sim 0.04$$

Cold Dark Matter

Supernovæ la as standard candles

Yannick Copin

Thermonuclear SN

- Explosion of a C+O WD
- Progenitor still uncertain...
- Cosmological standard candles
 - $M_{\rm B}^{\rm max} = -19.3 \pm 0.4$
 - ▶ Up to z~1.5 (-9 Gyr, 11 Gpc)
 - Intrinsic vs. extrinsic variability
 - Empirical photometric standardization (SALT/MLCS)
 - ► Fainter redder (color c)
 - Fainter faster (stretch = x_1)
 - $\blacktriangleright M_{\rm B} = M_{\rm B}^0 \alpha x_1 + \beta c$
 - ► $\sigma_{std} \sim 0.15 \text{ mag}$

SN la Hubble diagram

Low-z: L₀H₀² degeneracy
High-z: cosmological parameters
Ω_Λ, Ω_M, w, etc.
L₀H₀²: "nuisance parameter"
Redshift desert
Different search strategies

Importance of a low-z sample

- Anchor the Hubble diagram: lever arm low vs. high z, best at z ~ 0.05
- SN la standardization: sub-classification, intrinsic colors, spectral properties, environment impact, explosion physics, etc.
- Control systematic errors: flux calibration, spectral templates, K- and Scorrections, redshift evolution, etc.

Berlin, 2015/03/09

Yannick Copin

The Nearby Supernova Factory

Key dates

- 1998/99: discovery w/ SNe Ia of the accelerated expansion of the Universe
- ◆ 2000: project kick-off
- ◆ 2001: France-LBL MoU
- ◆ 2004: SNIFS on the sky
- ◆ 2004-2009+: SNf-I
- ◆ 2010-2015: SNf-II

The Nearby Supernova Factory

SN la search program

- Untargeted wide-field survey
- Within the Hubble flow
 - ▶ 0.03 < z < 0.08
- Various search programs
 - ► 05–08: Palomar-QUEST
 - 10-: Palomar Transient
 Factory
 - ▶ 12–: La Silla-QUEST
 - Public sources

Spectroscopic follow-up

- ◆ From -15 to +45 days every 2-3 d.
 - Dedicated & integrated instrument for homogeneous observations
- Mid-resolution optical spectra
- Photometric accuracy
 - Integral field spectrography

SuperNova Integral Field Spectrograph

Micro-lens array IFS

- Tiger-like (Oasis, Sauron)
 - Designed and built in Lyon
 - Spectro-photometric goals
- Spatial stage
 - ▶ 15×15 spx of 0''43
 - ► 6"4×6"4 field of view
- Spectral stage
 - 2 spectroscopic channels
 - B: 320–520 nm @2.4 Å
 - R: 510–1000 nm @2.9 Å
- Calibration unit

Photometric channel

- Target acquisition
- Guiding
- Atmospheric extinction
- *BVugriz* imagery

SNIFS on UH 2.2 m telescope

- Permanently mounted on UH88 since '04 (900+ nights!)
- Remote semi-automatic operations
 - Queue scheduling, virtual control room, AI support

Part II

Integral field spectrophotometry with the SuperNova Integral Field Spectrograph

3D spectro-photometry

- The goal is to reach high spectro-photometric accuracy on the whole SN time-series
 - ...notwithstanding a complex instrument and datareduction flow
 - ...despite the moon, clouds, atmosphere, etc.
- Common in photometry, but
 - new in transient spectroscopy
 - Cube reconstruction & calibration

- Point source extraction: 3D PSF photometry
- Flux calibration: atmospheric extinction modeling, autocalibration

Optical design of SNIFS

3D PSF photometry

● FoV too small for

accurate aperture photometry and sky subtraction

- Standard Kolmogorov profile is not adapted
 - Yet, could be adapted ?

Buton (PhD 2009)

3D PSF photometry

Empirical constrained Gaussian+Moffat model

- Radial×azimuthal factorization
- Trained on high-S/N standard stars
- 2 shape parameters:
 "Seeing" & "focus/guiding"
- Chromatic modeling: ADR, seeing(λ)
- Bayesian priors
- ► Flux accuracy: 0.7-1.5%

Galaxy background subtraction

PSF photometry applies to point sources without structured background: standard stars or SNe without significant host galaxy

For SNe with galaxy: diffuse background subtraction

- Construction of a galaxy model from 3D deconvolution
 - ► Use of reference exposures (once the SN has vanished)
 - Registration and PSF matching (seeing)
 - Still some regularization issues

Bongard+11

Flux calibration

Observed spectrum at airmass X [ADU]

Intrinsic flux	Flux solution	Atmospheric extinctio
[erg/s/cm²/Å]	[erg/s/cm²/Å / ADU]	[mag/airmass]

Photometric night

- Atmospheric transmission is stable during night: $\delta T = 1$
- "Classical" flux calibration scheme applies
 - ► Derive $K(\lambda)$ and $C(\lambda)$ from standard star observations
 - Optimal use of all standard stars of the night (χ²) + bayesian priors

Buton+13

Atmospheric extinction modeling

Extinction is split into physical components

 $\bar{K}(\lambda) = PK_{\text{Rayleigh}}(\lambda) + I_{O_3}K_{O_3}(\lambda) + \tau(\lambda/1\mu m)^{-a} + K_{\oplus}(\lambda, z)$

Buton+13

Non-photometric flux calibration

In non-photometric night, atmospheric extinction is variable because of clouds: $\delta T(\lambda,t) \neq 1$

- Auto-calibration using repeated observations of stars in P-channel
 - Clouds are achromatic: $\delta T(\lambda) = \delta T$
- Effective atmospheric transmission
 - Requires at least one photometric observation as reference

The flux calibration procedure

Photometric accuracy: standard stars

From comparison to reference flux tables

- ◆ UBVRI: 25 mmag (RMS)
 - ▶ P: 21 mmag, NP: 28 mmag
 - ▶ nMAD: 18 mmag
- ◆ *B*-*V*: 10 mmag (RMS)

A lower bound

- ◆ High flux regime (V<14)
- No galaxy subtraction
- Heterogeneous references
 - Standard star network
 - SNIFS Calibration Apparatus
 - Work in progress

Photometric accuracy: SNe la

From multi-color light curve fit (SALT2)

- Synthetic photometry
- ◆ *BVR*: 60 mmag (xRMS)
- ◆ *B*-*V*: 43 mmag
- An upper bound
 - Low flux measurements (V>16), galaxy subtraction
 - But highly sensitive to SALT2 inadequacies

Data acquisition & production

• 16500 spectroscopic pointings

- ◆ 5000 on followed SNe
- ◆ 8800 on std stars

● 3500 h of exposure time

- ◆ 2370 h on followed SNe (others: 600 h)
- ◆ 585 h on std stars
- ●750000+ raw files, >10 Tio
 - Total for all productions: >60 Tio

Berlin, 2015/03/09

Yannick Copin

Part III

Science from the Nearby Supernova Factory

Time series & synthetic photometry

Pereira+13

-15.2 -14.3 -13.3 -12.2 -11.3 -10.3 -9.3 -8.3 -7.2 -6.3 davs -5.3 Normalized Flux (F_{λ}) + Const. ximur -0.3 Σ 1.7 ш 0 ativ 8.7 13.7 16.7 18.7 21.7 23.7 74.1 77.1 79.1 82.1 87.1 89.1 97.1 3200 4000 5000 6000 7000 8000 9000 10000 Wavelength (Å)

•SN2011fe

The closest SN in the last
 25 years (M101, 6.4 Mpc)

An archetypal SN Ia

Berlin, 2015/03/0 Movie w/ label

Yannick Copin

SNfactory SN Ia light curves

Minimal galaxy subtraction requirements

Berlin, 2015/03/09

Yannick Copin

SNfactory main science sample 217 SNe with more than 5 epochs, 3051 spectra 156 "good" SNe (2395 spectra)

◆ 61 "poor" SNe (656), actually not well described by SALT2

Comparison to other nearby samples

The largest homogeneous nearby sample The only spectrophotometric time-series sample

"Traditional" Hubble diagram

Spectral analysis at max

Spectral indicators & Co.

SN la variabilities

- Intrinsic: progenitor & explosion physics
- Extrinsic: host extinction
- Some indicators are insensitive to extinction

- Chotard+11: extinction law and intrinsic color
- Spectral standardization:

 $M_{\rm B} = M_{\rm B}{}^{\rm 0} - \alpha \times \mathbf{x}_{\rm 1} + \beta \times \mathbf{c} + \gamma \times \mathbf{X} + \dots$

- Bailey+09: R(λ642/λ443)
- Chotard+15: "classical" indicators
- Sub-classification
- Other spectral studies
 - Gaussian Processes (Kim+13), derivative space (Sasdelli+15), twin studies, NUV studies, etc.

SN la host studies

 A probe on the progenitor issue

Global studies

- UV+Opt+IR
 integrated
 photometry
- Long-slit spectro. on host core
- For SNf: Childress+2013a,b
- •A 3rd parameter?
 - The "mass step"

Global vs. local host studies

Host-SN2007kk 1e39 1.0 1.5 +39.25° 0.9 1.0 0.8 0.7 g 0.5 $\Sigma(H\alpha) [erg.s^{-1}]$ 0.0 X0X -0.5 +39.24° -1.0-1.50.2 -2.00.1 55.61° 55.60° 55.59° -1.0-0.5 0.0 0.5 15 1.0 RA (deg) kpc

Global ≠ **Local**

 Use SNIFS FoV to probe local environment of SN (~1 kpc)

- SN subtraction
- Full time series cube merging
- ULySS spectrum modeling
 - Stellar & gas components

34

SN properties vs. local environment

• $\Sigma_{H\alpha} \equiv current star formation within 1 kpc$

- A proxy for progenitor age
- SNe la ϵ = locally passive
- SNe Ia α = locally star forming
- Fast SNe are laε
 - But the opposite is not true
- Mild color dependency
 - As expected, but not prev. seen
- Over-luminous mode in laε after SALT2 correction

• $\Delta M_{\rm B}^{\rm c} = 0.094 \pm 0.031$

The "mass step" from a local perspective

Yannick Copin

Local studies: SNe lae vs. la α

SNe laɛ from passive environments

- Heterogeneous population
- Poorly standardized
 - Requires intrinsic dispersion
 - No simple correction!
- Redshift evolution
 - ► Cosmology bias: ∆w~0.06

SNe la α from star forming environments

- Homogeneous population
 - No intrinsic dispersion
- Reduced Hubble residuals

►
$$\sigma_{\text{SALT2}} = 0.15 \rightarrow 0.11$$

SF bias impact on H

FUV flux (GALEX) for local SF
 Confirmation on Constitution sample (Hicken+09)

• $\Delta M_{B^{c}} = 0.094 \pm 0.025$ (combined)

Confirmation w/ MLCS2k2

- $\Delta M_{\rm B}^{\rm c} = 0.155 \pm 0.041$
- 3.3 ± 0.7% impact on H_0
 - Cepheid-calibrated SNe are in SFgalaxies
 - Hubble-flow SNe are in mixed environments
 - No more tension between Planck and SH0ES (Riess+11)

Berlin, 2015/03/09

SNfactory science publications

Case studies

- SN2005gj and CSM-SNe (Aldering+06)
- SN2006D and C-signatures (Thomas+07, 11)
- SN2007if and super-Chandrasekhar SNe (Scalzo+10, 12, 14, Childress+11)
- Super-normal SN2011fe (Röpke+12, Pereira+13)

Sample analyzes

- Spectral standardization (Bailey+09)
- Color law (Chotard+11)
- Gaussian Processes (Kim+13,14)
- Hosts studies (Childress+13a, b)
- Anisotropies (Feindt+13)
- K-correction bias and dispersion (Saunders+14)
- More to come

Next major publications: 1. photometry release, 2. cosmology analysis, 3. time series publication

Conclusions

- Integrated, robust, sciencefocused instruments rock
- Nearby SN search is difficult
 - SNIFS was mostly SN-starved
 - A 1000+ SN time series sample will be hard to get

•3D spectro-photometry, it works!

- Requires lots of efforts at every reduction steps (there's many)
- Seems like less precise than standard photometry at 1st...
- But photometry is "cheating": systematic errors are underestimated

Case for 3D PSF photometry

- Point-source spectrophotometry, crowded-field IFS, data mining in large IFSs to come (Muse/VLT, eELT, JWST)
- Flux calibration and atmospheric extinction
 - The principal (acknowledged) systematic error in current (SNLS, SDSS) photometric surveys, and future ones (DES, LSST)
 - Auto-calibration, real-time measurement, physical calibration

3D spectro-photometry in few words

