Integral Field Spectrography

Yannick Copin — Institut de physique nucléaire de Lyon — Université de Lyon

Outline of the presentation

Introduction

What is "integral field spectrography"?

Science cases

- What is it for?
- Instruments
 - How to do such a thing?
- Tea break

Algorithms

General and specific processing algorithms

Conclusions

Introduction

IFSC 2015

The astronomical signal

Restricting to "optical" electromagnetic waves

- Two spatial dimensions: (x, y) or (α, δ)
- One spectral dimension: λ
- Two polarizations
- One temporal dimension: t
- •Usually 2D-detectors (e.g. CCD/CMOS): s(i[,j])

How to acquire 3D-observations $f(x, y, \lambda)$ on 2D-detectors?

Aperture – 1D – spectroscopy

- 1D spectroscopy $s(i) \leftrightarrow f(\lambda)$ discards both spatial directions (integration or sampling)
- Optimal aperture size fixed by seeing
 - Atmospheric Differential Refraction ADR(t, λ)
 - Seeing(t, λ)
- ●Fixed aperture on the sky ⇔ ≠ physical radius
- •No feedback on effective spatial properties
- (aperture) Multi-Object Spectrograph: multiplexing on 2D detectors

Slit – 2D – spectroscopy

- 2D spectroscopy $s(i, j) \leftrightarrow f(x, \lambda)$ retains one spatial direction
- Optimal slit position and width are imposed
 - Slit position set by ADR
 - Slit width set by seeing
 - But ADR(t, λ) and seeing(t, λ)...
- Sparse use of 2D detectors \Rightarrow "slitlet" MOS

Slitless spectroscopy

•The image is directly dispersed in the FP

- Intricate mixing of spatial and spectral informations: $s(i, j) \nleftrightarrow f(x, y, \lambda)$
- Partial (model-dependent) demixing using different dispersion orientations and/or external priors (e.g. images for position and shapes)

What IFS is

Simultaneous spectroscopy on contiguous spatial elements

- Pixel = PIXture ELement
- Spaxel = SPAtial piXture ELement
- Voxel = VOlume piXture ELement
- •A 3D datacube $f(x, y, \lambda)$ is:
 - A contiguous collection of monochromatic images f_λ(x, y) ("slices")
 - A dense collection of localized spectra $f_{x,y}(\lambda)$

Roth 2002

Muse on NGC 4650A

What IFS is not

- Slitless spectroscopy
 - Spatial and spectra information entangled on detector
- Multi-Object Spectroscopy
 - Discrete (non-contiguous) spatial samples
- Sequential (time-dependent) observations
 - Scanning long slits, Fabry-Perot (tunable filter) or Michelson (Fourier-transform) spectroscopies
- "Radio" and X-ray observations
 - Radio/FIR can retain phase, X-ray can measure photon energy

Science cases

Science cases

Spatially extended objects

- Galaxies stellar populations (age, metallicity), gas content, kinematics –, AGN
- Young stellar objects
- Solar system objects: Sun, planets & asteroids
- Strong lenses, galaxy clusters (X-ray)
- Point source spectro-photometry
 - High spatial resolution spectroscopy (spectro-astrometry)
 - Structured background: type la supernovae
 - Resolved stellar populations (crowded field spectro-photometry): stellar clusters, PNe
 - Exo-planets (coronography)

• Serendipitous observations: inter-galactic medium

Individual galaxies

• Stellar and gas kinematics

- Stellar populations (age & metallicity)
- •Gas content, etc.

NGC 4365, 1st SAURON paper

Kinematics from ATLAS^{3D}

Krajnovic+ 2011MNRAS.414.2923K

Gas analyses

Star-forming ISM, z=0.8 – 2.2 AO + SINFONI 2012MNRAS.426..935S

Yannick Copin

AGN companion galaxy

AGN

Muse science verification data (20"×18") Husband+ 2015MNRAS.452.2388H

PKS1614+051 - quasar @z=3.2

Yannick Copin

bridge of material

Galaxy surveys

Spatially-resolved observations

- ◆ Kinematics, stellar populations, star formation, gas content, etc.
 ⇒ dynamics, contents, formation history
- Fixed aperture biases
 - ◆ Fixed aperture on the sky ⇔ ≠ physical radius, and bias is function of redshift (e.g. CALIFA 2015arXiv151101300G)
 - Integrated quantities are flux weighted, not spatial means

•IFS surveys

- Low-redshift: Sauron/Atlas3D, DiskMass, Pings, Venga
- ◆ z > 0.7: Massiv, Sins, Glace, Images

SINS survey

SINFONI IFS of z ~ 2 Star-forming Galaxies Förster Schreiber+ 2009ApJ...706.1364F

IFSC 2015

Yannick Copin

KMOS^{3D}

Spectro-astrometry

Spectroscopy of 2 unresolved point sources

- The integrated spectrum is the sum of the 2 spectra
- Barycenter position depends on the ratio of the 2 spectral

• Review: 2008LNP...742..123W (not IFS specific)

Spectro-photometry

- IFS is the tool of choice for spectro-photometry
 - Aperture spectrophotometry is "difficult"
 - 3D PSF spectrophotometry requires good knowledge of spatial properties

Primary objective for SNIFS

- High spectro-photo. accuracy on the whole SN time-series
 - ...despite the moon, clouds, atmosphere, etc.
 - ... despite the galaxy background
 - ...notwithstanding a complex instrument and data-reduction flow
- "Usual" in photometry, but new in transient spectroscopy
 - Photometry makes strong assumption on sources (extinction, colors, K-corrections)

Time series & synthetic photometry

SN2011fe

The closest SN in the last
 25 years (M101, 6.4 Mpc)

Pereira+2013

SN 2011fe time series

SNfactory SN la light curves

248 light-curves

Global vs. local host studies

Host-SN2007kk 1e39 1.0 1.5 +39.25° 0.9 1.0 0.8 0.7 g 0.5 $\Sigma(H\alpha) [erg.s^{-1}]$. 0.0 X0X -0.5 +39.24° -1.0-1.50.2 -2.00.1 55.61° 55.60° 55.59° -1.0 - 0.5 0.00.5 1.5 1.0 RA (deg) kpc

Rigault+ 2013A&A...560A..66R

Global ≠ Local

 Use SNIFS FoV to probe local environment of SN (~1 kpc)

- SN subtraction
- Full time series cube merging
- ULySS spectrum modeling
 - Stellar & gas components

K-corrections

Difference in effective band passes between rest- and observer frames

- Rest frame: $X_{RF} = -2.5 \log \int_X f(\lambda) d\lambda \longrightarrow$ that's what you want
- Obs. frame: $X_{OF} = -2.5 \log \int_X f(\lambda/(1+z)) d\lambda \longrightarrow that'$ what you get
- $\bigstar X_{RF} = X_{OF} + K_{OF \rightarrow RF}$
- No problem if you perfectly know $f(\lambda)$
 - But usually you don't know *that much* $f(\lambda)$
 - "Initiated guess" on $f(\lambda)$ provides the correction factor
- Traditional photometry
 - Flux calibration to the mmag level
 - But K-correction systematic errors severely under-estimated

Crowded-field spectroscopy

Resolved stellar populations & kinematics

- PSF-fitting spectrophotometry
 - "DAOphot in 3D"
 - Kamann+
 2013A&A...549A..71K
- Requires a precise PSF spectro-spatial model
 - Radial profile, chromaticity, ADR

Strong lenses

3D data mining

IFSC 2015

Yannick Copin

Instruments

IFSC 2015

Pre-history – 3D-spectroscopy

- The Image-Slicer a Device for Reducing Loss of Light at Slit of Stellar Spectrograph, Bowen, 1938ApJ....88..113B
- Holography at the telescope an interferometric method for recording stellar spectra in thick photographic emulsions, Lindegren & Dravins, 1978A&A....67..241L
 - Lippmann color photography principle
 - Store FT of stellar spectra in the emulsion thickness

History – Fiber-fed IFS

 A fiber-optics dissector for spectroscopy of nebulosities around quasars and similar objects, C. Vanderriest, 1980PASP...92..858V

 \blacklozenge Pseudo-slit of 200 fibers of ø 100 μm

History – MLA-based IFS

- An Integral Field Spectrograph (IFS) for Large Telescopes, G. Courtès 1982ASSL...92..123C
 - TIGER-like IFS (Oasis, Sauron, SNIFS)
 - Applicable to fiber-fed IFS to improve throughput

Figure 1. Integral Field Spectrograph: The array of lenses I is placed in the telescope focal plane and produces a chequer pattern of exit pupils; the focal reducer L0₁0₂, equipped with a Carpenter prism-grating P, gives a two-dimensional distribution of the spectra corresponding to each pupil.

Yannick Copin

History – TIGER paper

The Integral Field Spectrograph TIGER, Bacon et al., 1988ESOC...30.1185B

300 kms⁻¹

0.5 arcsec

Yannick Copin

0.5 arcsec

Methods of spatial sampling

Different sampling of the FoV

Different usage of the detector

Allington-Smith et al. 1998

In any case, beware the overlapping of different dispersion orders on the detector!

IFSC 2015

Yannick Copin

Figure of merits

Instruments are defined by

- Spectral coverage Δλ and resolution element δλ
 - Spectral resolution R = $\lambda/\delta\lambda$
 - ► Spectral elements $n = \Delta \lambda / \delta \lambda$
- Spatial coverage Ω and resolution element $\delta\Omega$
 - ► Spatial elements N = $\Omega/\delta\Omega$
- Collecting area A
 - ► Grasp $\hat{=} A \times \Omega$
 - Specific grasp $\hat{=} A \times \delta \Omega$
- Total transmission ε
 - Etendue $\hat{=} A \times \Omega \times \varepsilon$

- Spectral cov. vs. resolution
- Spatial FoV vs. resolution
- Spatial vs. spectral

FoM is science driven

- Photon noise vs. sky noise vs. RoN/dark
- ◆ MAKE YOUR CHOICE
- N×n = total nb of elements to be stored on the detector
 - Account for overheads
- See 3D Spectroscopic Instrumentation (Bershady 2009arXiv0910.0167B)
FoM

Bershady 2009arXiv0910.0167B

IFSC 2015

Fiber-fed IFS

Two possible couplings

- Direct fiber coupling (DC)
 - Direct imaging
- Frontend/backend MLA coupling (LC)
 - Pupil imaging

Pros

- Flexibility to "reformat" the field to match the spectrograph (e.g. pseudo-slit IFUs)
- Efficient data packing ($\approx 50\%$)
- DC: Low cost, high throughput
- ◆ FC: filling factor close to 100%

DC

Cons

- Focal Ratio Degradation (light loss/scattered light)
- ► Incomplete fill factor (<65%)
- Aperture effect
- ◆ LC
 - Scattered light (MLA)
 - Lower throughput
- Fiber transmission: not IR, not cryo, variable

Fiber-fed IFS

Notable examples

- Direct coupling
 - ► PPAK (Calar Alto), VIRUS (HET)
 - SAMI (hexabundles)
- Lenslet coupling:
 - ► PMAS (Calar Alto)
 - VIMOS & Flames-Giraffe (VLT), GMOS & CIRPASS (Gemini)

Fiber-fed IFS

DiskMass survey

- SparsePak (WYIN 3.5 m)
- PPak (Calar Alto 3.5 m)
- Bershady+
 2010ApJ...716..198B
- •MaNGA (Sloan 2.5 m)
 - ◆ DC, fill factor of 56%
 - Drory+ 2015AJ....149...77D

Pupil imaging (MLA) IFS

Pupil imaging (MLA) IFS

- Pupil imaging using Micro Lens Array
 - E.g. epoxy replicate or fused Si cross barrels

Pros

- Simple design, high throughput
- Clean decoupling of spatial & spectral dimensions

Cons

- Inefficient data packing on detector ($\approx 25\%$) \Rightarrow small FoM
- Complex data reduction from interlaced spectra (x-talk)
- Examples
 - Oasis/Sauron (WHT), SNIFS (UH)
 - Osiris (Keck)

SuperNova Integral Field Spectrograph

- Spectro-photometric goals
 - Spatial stage
 - ► 15×15 spx of 0"43
 - ► 6''4×6''4 field of view
 - Spectral stage
 - 2 spectroscopic channels
 - B: 320–520 nm @2.4 Å
 - R: 510–1000 nm @2.9 Å
 - Calibration unit

Photometric channel

- Target acquisition
- Guiding
- Atmospheric extinction
- BVugriz imagery

Optical design of SNIFS

Structure of SNIFS frames

SNIFS on UH 2.2 m telescope

- Permanently mounted on UH88 since '04 (900 nights!)
- Remote semi-automatic operations
 - Queue scheduling, virtual control room, AI support

Image slicers

Advanced Image Slicer

- Slicer stack
- Pupil imaging

• Pros

- Compact design, potentially cryogenic (IR)
- Very efficient use of detector
- Can use all reflective optics (IR)

Cons

- Complex design of the slicer
- x & y directions are not sampled the same way

Durham Univ.

Image slicers

- Notable examples
 - FISICA (GTC)
 - SPIFFI, MUSE and KMOS (VLT)
 - NIRSpec (JWST, cryo)
 - *Harmoni* (E-ELT)

VLT (1st generation)

•VIMOS: massive fiber-fed IFU

- LR: MLA + 6400 fibers @0"33 or 0"67/fiber; R=200
- ◆ HR: 1/4th of the FoV, R=2500

•FLAMES-IFU: 15 deployable IFUs + 15 sky_fibers-----

◆ MLA + 20 fibers on 2"×3" @ 0"52, R=10 000-40 000

•SINFONI: AO + NIR IFU

Slicer 32×64 @ 250, 100 or 25 mas/spx, R=2000-4000, 1.1 2.45 μm

VLT (2nd generation)

• MUSE: wide-field IFU

- ◆ 24 image slicers
- ◆ FoV 60''×60'' @ 0"2/spx
- ◆ R=3000, optical (480-930 nm)
- HR-mode not yet functional
- •KMOS: deployable IFUs
 - Fully cryogenic
 - ◆ 24 deployable slicers of 2"8×2"8 @ 0"2/
 - Patrol field: 7'2 diameter
 - R~3000, IR (0.8-2.5 μm)

5 m Hale Telescope (Palomar)
Cosmic Web Imager: wide-field IFS (2009)
Image slicer ×24, 60"×40", R=5000, 370-950 nm
Oxford SWIFT: AO-fed IFS (2009)
Image slicer, 10"×21" @0"23, R=4000, 0.65-1 μm
Project 1640: AO + Lyot coronograph + IFS (2008)

◆ MLA, 4''×4'', R=45, 0.9-1.8 μm

HR8799 Oppenheimer et al. 2013

IFSC 2015

SAMI

- Sydney-AAO Multi-object Integral-field spectrograph
 - "Giraffe mode": fiber-based multi-object IFU
 - ◆ 13×61 fused hexabundles on a 1 sq.° FoV
 - Croom+ 2012MNRAS.421..872C

SAMI galaxy survey of ~3400 galaxies in 3 years

• Bryant+ 2015MNRAS.447.2857B

Hobby-Ederly 9.2m Telescope

- McDonald observatory (TX)
- •VIRUS-P: largest FoV (1.7' × 1.7')
 - VENGE, MASSIVE surveys
- •VIRUS: massively parallel for HET Dark Energy Exp.
 - ◆ 156 channels, 34 944 fibers on 78 IFUs on 22' FoV

Algorithms

IFSC 2015

Cube reconstruction (e.g. SNIFS)

CCD preprocessing

- Beware of all subtle effects: bias/dark structures, non-linearity, CTE, etc..
- Diffuse-light subtraction
- Instrument optical model
 - Unbiased flux extraction
- Spectral calibration

Control of biases at low annick Copin flux levels 56

Cube calibration

Wavelength solution (per spx)

Using internal arc spectrum and/or sky lines

Flat-field

- Detector level: px-to-px gain fluctuations, spectrograph vignetting
 - Beware: the gain is chromatic, a FF might be difficult to acquire
- Spatial directions: spx-to-spx transmission fluctuations (fibers, MLA), telescope vignetting
 - Internal reference (integrated sphere), twilight
- Spectral direction: chromatic instrumental transmission
 - Internal reference (continuum spectrum), per spx

Cosmic rays

• At detector level (2D, e.g. pyCosmic) or at cube level (3D)

Atmospheric Differential Refraction

- **Dispersion** by atmosphere
 - Refractive index $n(\lambda, P, T, RH)$
- 2 observational quantities
 - Airmass X $\approx 1/\cos(d_z)$
 - Parallactic angle η
- 0th-order atmospheric refraction usually handled by telescope
 - Targeting and guiding done in a spectral band, e.g. V
 - Telescope can include AR corrector
- $ADR = 1^{st}$ -order terms

4000

5000

6000

Wavelength [Å]

7000

8000

9000 10000

Atmospheric Differential Refraction 3 types of ADR E.g.: SNIFS, 0''43 / spx

- Chromatic: source
 position in FP is function
 of λ
 - ► Offset dx, dy function of λ
- Temporal: source position in FP is function of t
 - Blurring as function of λ
- Spatial: both effects are functions of position in FP
 - ► ADR(x, y) for large FoV
- •Use effective quantities

- Chromatic: few spx
- Temporal: sub-spx
- ◆ Spatial: ~0 (FoV 7''×7'')

Sky background subtraction

Best option: dedicated fibers or spaxels

Complex optical design

• DANGEROUS: FoV areas supposedly free of signal

- The background inaccuracy is amplified by source extent
- Modeling of the sky spectrum (e.g. PCA)
 - OK for emission lines, not really for sky continuum

3D PSF photometry

C. Buton (PhD 2009)

- FoV might be too small for accurate aperture photometry and sky subtraction
 - This is the case for 7"×7" SNIFS
- Standard Kolmogorov profile is probably not adapted
 - Existence of a large-scale diffuse component
 - Described in the Fourier space

3D PSF photometry with SNIFS C. Buton (PhD 2009)

- Empirical constrained
 Gaussian+Moffat model
 - Radial×azimuthal factorization
 - Trained on high-S/N standard stars
 - 2 shape parameters:
 "Seeing" & "focus/guiding"
 - Chromatic modeling: ADR, seeing(λ)
- ► Flux accuracy: 0.7-1.5%

Galaxy background subtraction (SNIFS)

Yannick Copin

- PSF photometry applies to point sources without structured background: standard stars or SNe without significant host galaxy
- For SNe with galaxy: diffuse background subtraction
 - Construction of a galaxy model from 3D deconvolution
 - Use of reference exposures (once the SN has vanished)
 - Registration and PSF matching (seeing)

Bongard+2011

Dithering & mosaicking

- Dithering: moving FoV by fraction of px/spx
 - Can circumvent spatial under-sampling (which is never good...)
 - Initially developed for HST imaging
 - ► Drizzle, 2002PASP..114..144F
- Applicable to 3D spectroscopy
 - Sharp+ 2015MNRAS.446.1551S
- Beware: resampling (ADR, dithering) induce covariant errors!

Yannick Copin

Increase S/N

Should you try to increase the Signal/Noise?

- Nothing is free: it will decrease the nb of independent measurements
- Forward modeling: directly model the observations
 - ► χ^2 or maximum likelihood, Bayesian estimates
 - A precise knowledge of noise properties is crucial
 - ► The less you manipulate the data, the better
 - ► NO
- Backward modeling: model quantities derived from observations
 - Sometimes a minimal S/N is required
 - ► MAYBE

Minimal S/N

• High S/N or linear model

- χ² is (reasonably) quadratic in the parameters
- MLE are unbiased
- Low S/N and non-linear
 - Quadratic approximation does not hold anymore
 - MLE are biased
- There's a minimal S/N requirement
 - It depends on your science

Smoothing vs. binning

How to increase Signal/Noise?

- Smoothing: introduce correlation and *usually ignore it afterwards...*
 - ► Boxcar filtering, Gaussian convolution, etc.
 - **DON'T DO THIS**: false sense of improvement!
- Binning: explicitly regroup data in adjacent bins
 - Bins are (at least as) independent (as before)
 - ► Easy to implement in 1D
 - Trickier for higher dimension: ensure tessellation and compactness
- Adaptive scheme
 - Preserve resolution while requesting minimal S/N

Voronoi binning

Cappellari & Copin 2003MNRAS.342..345C

Very general objectives

- Topological: proper tessellation (no hole nor overlap)
- Morphological: as compact bin as possible
- Uniformity: obj. fun. (e.g. S/N) as constant as possible

•Two steps

- Bin accretion: describe bins as from the seeds of a Voronoi Tessellation
- Bin regularization: build a Centroidal or Weighted Voronoi Tessellation
- Reference implementation in IDL/python

IFSC 2015

Voronoi binnings

Cappellari & Emsellem 2004PASP..116..138C

Diehl & Statler 2006MNRAS.368..497D

Ibata+ 2009MNRAS.395..126I

Yannick Copin

Photometry & kinematics

Galaxy dynamics

◆ Core quantity: distribution function f(x, y, z, v_x, v_y, v_z)

Resolved observations = integral along the LoS

- Photometry: $\mu(x,y) = \int f d^{3}v dz = 0^{th}$ order
 - Modeling (e.g. GalFit): radial profile, flattening, PA, etc.
- LOSVD: $L_{x,y}(v_z) = \int f dv_x dv_y dz$
 - Complete kinematic information
 - ► V: 1st-order moment
 - ► σ , h_3 , h_4 , ...: higher orders
- Kinemetry = quantify kinematic maps
 - Copin 00, Krajnovic+ 2006MNRAS.366..787K

Kinemetry

- Basically a Fourier expansion of the kinematic fields in polar coordinates
 - E.g. $v(r, \phi) = v_0 + \sum_i v_i \cos(\phi \phi_i)$
- Two main usages
 - Quantify kinematic fields
 - ► Kinematic angle, twists
 - Kinematically Decoupled Core
 - Enforce specific symmetries
 - E.g. 2-integral Jean models are symmetric

Spectro-photometric accuracy (SNIFS)

Yannick Copin

- From comparison to reference flux tables of std stars
 - ◆ UBVRI: 25 mmag (RMS)
 - ▶ P: 21 mmag, NP: 28 mmag
 - ▶ nMAD: 18 mag
 - ◆ B-V: 10 mmag (RMS)

A lower bound

IFSC 2015

- High flux regime (V<14)
- No galaxy subtraction
- Standard star network at the mmag level
- SNIFS Calibration Apparatus

Data format

Traditional FITS

- NAXIS=3 "true" cube (x, y, λ)
 - Ease of use: each slice is an image, each spx is a spectrum
 - Only for evenly sampled square spaxels OR require resampling
 - TRY NOT RESAMPLING your cubes prior to analysis!
 - WCS can help to manage spatial/spectral distortions
- Euro3D format (Kissler-Patig+ 2004AN....325..159K)
 - Pure Multi-Extension FITS file
 - Spaxel-oriented: no need for resampling

•HDF5

Very versatile format, efficient IO

Conclusions

IFSC 2015

IFS pros and cons

Pros

- High multiplexing
- Management of ADR
- Full spectro-spatial PSF
 - Clean spectro-spatial disambiguation
- Synthetic measurements
 - ▶ Binning, PSF photometry, ...
 - Synthetic photometry is Kcorrection free
- Ease-of-use (e.g. targeting)

Cons

- "Complex" data treatment, format and analysis
- Scattered light from spatial dissector (MLA, slicer)
- It all depends on your science case!

Look at your science case

•Your science case should drive your choice

- Think the science objectives, express your technical constraints, find the best instrumental setup
- IFS are most probably a good choice, but consider alternatives: slitless spectroscopy, MOS, imagery
- Be rigorous, trust statistics and respect Shannon
 Think out of the box
 - "Step back and think" is sometimes more efficient than "focus and work"
- Don't reinvent the wheel, improve the rocket!
 - Contribute to open source softwares

The future of IFS

Related activities

- X-rays: X-IFU on Athena
 X-ray Observatory (2028+)
- Transverse/upcoming technologies
 - Hyperspectral imagers: multi-band imaging
 - Impressive performances in geoscience, medical imagery, etc.
 - Not used in astronomy, yet?(SED machine)

Integrated astro-photonics

- Stationary-Wave Integrated Fourier Transform Spectrometer (2014SPIE.9147E..29B)
- Photonic Lantern/Arrayed Waveguide Gratings (2013MNRAS.428.3139H)
- Binary optics: integrated diffractive optics (MLA)
- Energy-sensitive detectors
 - Multi-layer detectors (e.g. commercial FOVEON X3)
 - Superconducting Tunneling Junction (R=10-100 in optical)

3D spectroscopy in few words

IFSC 2015

Project

https://dl.univ-lyon1.fr/995sivtoh4