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Introduction
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The astronomical signal
●Restricting to “optical” electromagnetic waves

◆Two spatial dimensions: (x, y) or (α, δ)

◆One spectral dimension: λ

◆Two polarizations

◆One temporal dimension: t

●Usually 2D-detectors (e.g. CCD/CMOS): s(i[,j])

How to acquire 3D-observations f(x, y, λ)

on 2D-detectors?
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Aperture – 1D – spectroscopy
●1D spectroscopy s(i) ↔ f(λ) discards both 
spatial directions (integration or sampling) 

●Optimal aperture size fixed by seeing

◆Atmospheric Differential Refraction ADR(t, λ)

◆Seeing(t, λ)

●Fixed aperture on the sky ⇔ ≠ physical 
radius

●No feedback on effective spatial properties

●(aperture) Multi-Object Spectrograph: 
multiplexing on 2D detectors
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Slit – 2D – spectroscopy
●2D spectroscopy s(i, j) ↔ f(x, λ) 
retains one spatial direction

●Optimal slit position and width 
are imposed

◆Slit position set by ADR

◆Slit width set by seeing

◆But ADR(t, λ) and seeing(t, λ).

●Sparse use of 2D detectors ⇒ 
“slitlet” MOS
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Slitless spectroscopy
●The image is directly 
dispersed in the FP

◆Intricate mixing of spatial 
and spectral informations: 
s(i, j) ↮ f(x, y, λ)

◆Partial (model-dependent) 
demixing using different 
dispersion orientations 
and/or external priors (e.g. 
images for position and 
shapes)

3D-HST survey
arxiv:1510.02106
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What IFS is

Simultaneous spectroscopy on 
contiguous spatial elements

◆Pixel = PIXture ELement

◆Spaxel = SPAtial piXture ELement

◆Voxel = VOlume piXture ELement

●A 3D datacube f(x, y, λ) is:

◆A contiguous collection of mono-
chromatic images fλ(x, y) (“slices”)

◆A dense collection of localized spectra 
fx,y(λ)

Roth 2002
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Muse on NGC 4650A 
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What IFS is not
●Slitless spectroscopy

◆Spatial and spectra information entangled on detector

●Multi-Object Spectroscopy

◆Discrete (non-contiguous) spatial samples

●Sequential (time-dependent) observations

◆Scanning long slits, Fabry-Perot (tunable filter) or 
Michelson (Fourier-transform) spectroscopies

●“Radio” and X-ray observations

◆Radio/FIR can retain phase, X-ray can measure photon 
energy
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Science cases
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Science cases
●Spatially extended objects

◆Galaxies – stellar populations (age, metallicity), gas content, 
kinematics –, AGN

◆Young stellar objects

◆Solar system objects: Sun, planets & asteroids

◆Strong lenses, galaxy clusters (X-ray)

●Point source spectro-photometry

◆High spatial resolution spectroscopy (spectro-astrometry)

◆Structured background: type Ia supernovae

◆Resolved stellar populations (crowded field spectro-photometry): 
stellar clusters, PNe

◆Exo-planets (coronography)

●Serendipitous observations: inter-galactic medium
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Individual galaxies
●Stellar and gas kinematics

●Stellar populations (age & metallicity)

●Gas content, etc.
NGC 4365, 1st SAURON paper
Davies+ 2001ApJ.548L..33D
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Kinematics from ATLAS3D

Krajnovic+ 2011MNRAS.414.2923K
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Gas analyses

Star-forming ISM, z=0.8 – 2.2
AO + SINFONI 2012MNRAS.426..935S
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AGN

PKS1614+051
quasar @z=3.2

AGN companion galaxy

bridge of material

Muse science verification data (20''×18'')
Husband+ 2015MNRAS.452.2388H
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Galaxy surveys
●Spatially-resolved observations

◆Kinematics, stellar populations, star formation, gas content, etc. 
⇒ dynamics, contents, formation history

●Fixed aperture biases

◆Fixed aperture on the sky ⇔ ≠ physical radius, and bias is 
function of redshift (e.g. CALIFA 2015arXiv151101300G)

◆Integrated quantities are flux weighted, not spatial means

●IFS surveys

◆Low-redshift: Sauron/Atlas3D, DiskMass, Pings, Venga

◆z > 0.7: Massiv, Sins, Glace, Images
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SINS survey

SINFONI IFS of z ~ 2 Star-forming Galaxies
Förster Schreiber+ 2009ApJ.706.1364F
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KMOS3D

600 galaxies, z = 0.7 – 2.7
Wisnioski+ 2015ApJ.799..209W
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Spectro-astrometry
●Spectroscopy of 2 unresolved point sources

◆The integrated spectrum is the sum of the 2 spectra

◆Barycenter position depends on the ratio of the 2 spectra

●Review: 2008LNP.742..123W (not IFS specific)

ZCMa observed with OASIS
Garcia+ 1999A&A.346..892G
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Spectro-photometry
●IFS is the tool of choice 
for spectro-photometry

◆Aperture spectro-
photometry is “difficult”

◆3D PSF spectro-
photometry requires good 
knowledge of spatial 
properties

●Primary objective for 
SNIFS

◆High spectro-photo. accuracy 
on the whole SN time-series

▶.despite the moon, clouds, 
atmosphere, etc.

▶. despite the galaxy background

▶.notwithstanding a complex 
instrument and data-reduction 
flow

◆“Usual” in photometry, but 
new in transient spectroscopy

▶Photometry makes strong 
assumption on sources 
(extinction, colors, K-corrections)
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Time series & synthetic photometry 
●SN2011fe

◆The closest SN in the last 
25 years (M101, 6.4 Mpc)

◆An archetypal SN Ia

Pereira+2013

U B V R I
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SN 2011fe time series
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SNfactory SN Ia light curves
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Global vs. local host studies

Global ≠ Local

●Use SNIFS FoV to probe local 
environment of SN (~1 kpc)

◆SN subtraction

◆Full time series cube merging

◆ULySS spectrum modeling

▶Stellar & gas components

Rigault+ 2013A&A.560A..66R
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K-corrections
●Difference in effective band passes between rest- and 
observer frames

◆Rest frame: XRF = -2.5 log ∫X f(λ) dλ → that's what you want

◆Obs. frame: XOF = -2.5 log ∫X f(λ/(1+z)) dλ → that' what you get

◆XRF = XOF + KOF→RF

●No problem if you perfectly know f(λ)

◆But usually you don't know that much f(λ)

◆“Initiated guess” on f(λ) provides the correction factor

●Traditional photometry

◆Flux calibration to the mmag level

◆But K-correction systematic errors severely under-estimated



IFSC 2015 Yannick Copin 27

Crowded-field spectroscopy 

Resolved stellar 
populations & kinematics

●PSF-fitting spectro-
photometry

◆“DAOphot in 3D”

◆Kamann+ 
2013A&A.549A..71K

●Requires a precise PSF 
spectro-spatial model

◆Radial profile, 
chromaticity, ADR
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Strong lenses
Cluster Abell S1063 by MUSE
Karman+ 2015A&A.574A..11K
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3D data mining

Hubble Deep Field South
Bacon et al. 2015A&A.575A..75B
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Instruments
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Pre-history – 3D-spectroscopy
●The Image-Slicer a Device for Reducing Loss of Light at 
Slit of Stellar Spectrograph, Bowen, 1938ApJ..88..113B 

●Holography at the telescope - an interferometric method 
for recording stellar spectra in thick photographic 
emulsions, Lindegren & Dravins, 1978A&A..67..241L

◆Lippmann color photography 
principle

◆Store FT of stellar spectra in the 
emulsion thickness
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History – Fiber-fed IFS
●A fiber-optics dissector for spectroscopy of 
nebulosities around quasars and similar objects, 
C. Vanderriest, 1980PASP.92..858V

◆Pseudo-slit of 200 fibers of ⌀ 100 µm 
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History – MLA-based IFS
●An Integral Field Spectrograph (IFS) for Large 
Telescopes, G. Courtès 1982ASSL.92..123C

◆TIGER-like IFS (Oasis, Sauron, SNIFS)

◆Applicable to fiber-fed IFS to improve throughput
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History – TIGER paper
●The Integral Field Spectrograph TIGER, Bacon et al., 
1988ESOC.30.1185B

M51, [NII]-Hα
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Methods of spatial sampling

Allington-Smith et al. 1998

Different sampling
of the FoV

Different usage
of the detector

In any case, beware the overlapping of different dispersion orders on the detector!
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Figure of merits
●Instruments are defined by

◆Spectral coverage Δλ and 
resolution element δλ

▶Spectral resolution R = λ/δλ

▶Spectral elements n = Δλ/δλ

◆Spatial coverage Ω and 
resolution element δΩ

▶Spatial elements N = Ω/δΩ

◆Collecting area A

▶Grasp ≙ A×Ω

▶Specific grasp ≙ A×δΩ

◆Total transmission ε

▶Etendue ≙ A×Ω×ε

●FoM is science driven

◆Spectral cov. vs. resolution

◆Spatial FoV vs. resolution

◆Spatial vs. spectral

◆Photon noise vs. sky noise vs. 
RoN/dark

◆MAKE YOUR CHOICE

●N×n = total nb of elements 
to be stored on the detector

◆Account for overheads

●See 3D Spectroscopic 
Instrumentation (Bershady 
2009arXiv0910.0167B)
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FoM

Bershady 2009arXiv0910.0167B
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Fiber-fed IFS
●Two possible couplings

◆Direct fiber coupling (DC)

▶Direct imaging

◆Frontend/backend MLA 
coupling (LC)

▶Pupil imaging

●Pros

◆Flexibility to “reformat” the 
field to match the spectrograph 
(e.g. pseudo-slit IFUs)

◆Efficient data packing (≈50%)

◆DC: Low cost, high throughput

◆FC: filling factor close to 100%

●Cons

◆DC

▶Focal Ratio Degradation 
(light loss/scattered light)

▶Incomplete fill factor (<65%)

▶Aperture effect 

◆LC

▶Scattered light (MLA)

▶Lower throughput

◆Fiber transmission: not IR, 
not cryo, variable



IFSC 2015 Yannick Copin 39

Fiber-fed IFS
●Notable examples

◆Direct coupling

▶PPAK (Calar Alto), VIRUS (HET)

▶SAMI (hexabundles)

◆Lenslet coupling: 

▶PMAS (Calar Alto)

▶VIMOS & Flames-Giraffe (VLT), GMOS & CIRPASS (Gemini)
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Fiber-fed IFS
●DiskMass survey

◆SparsePak (WYIN 3.5 m)

◆PPak (Calar Alto 3.5 m)

◆Bershady+ 
2010ApJ.716..198B

●MaNGA (Sloan 2.5 m)

◆DC, fill factor of 56%

◆Drory+ 2015AJ..149.77D
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Pupil imaging (MLA) IFS
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Pupil imaging (MLA) IFS
●Pupil imaging using Micro Lens Array

◆E.g. epoxy replicate or fused Si cross barrels

●Pros

◆Simple design, high throughput

◆Clean decoupling of spatial & spectral dimensions

●Cons

◆Inefficient data packing on detector (≈25%) ⇒ small FoM

◆Complex data reduction from interlaced spectra (x-talk)

●Examples

◆Oasis/Sauron (WHT), SNIFS (UH)

◆Osiris (Keck)
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SuperNova Integral Field Spectrograph
●Spectro-photometric 
goals

◆Spatial stage

▶15×15 spx of 0''43

▶6''4×6''4 field of view

◆Spectral stage

▶2 spectroscopic channels

– B: 320–520 nm @2.4 Å

– R: 510–1000 nm @2.9 Å

◆Calibration unit

●Photometric channel

◆Target acquisition 

◆Guiding

◆Atmospheric extinction

◆BVugriz imagery

Micro-lens array
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Optical design of SNIFS

Focal plan
(0''43/spx)

CCD
(225 spectra)

Spectrograph
entry

Cube
(x,y,λ)

Micro-lens array
(15×15)

Spectrograph

x

y

λ

(Fig. C. Buton)

Point source
extraction

Flux calibration
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Structure of SNIFS frames
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SNIFS mechanical design
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SNIFS on UH 2.2 m telescope

●Permanently mounted on UH88 since '04 (900 nights!)

●Remote semi-automatic operations

◆Queue scheduling, virtual control room, AI support
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Durham Univ.

Image slicers
●Advanced Image Slicer

◆Slicer stack

◆Pupil imaging

●Pros

◆Compact design, potentially 
cryogenic (IR)

◆Very efficient use of detector

◆Can use all reflective optics (IR)

●Cons

◆Complex design of the slicer

◆x & y directions are not 
sampled the same way
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Image slicers
●Notable examples

◆FISICA (GTC)

◆SPIFFI, MUSE and KMOS (VLT)

◆NIRSpec (JWST, cryo)

◆Harmoni (E-ELT)

NIRSpec
Diamond-machined

IFU slicer at CRAL (Bacon+10)
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VLT (1st generation)
●VIMOS: massive fiber-fed IFU

◆LR: MLA + 6400 fibers @0”33 or 0”67/fiber; R=200

◆HR: 1/4th of the FoV, R=2500  

●FLAMES-IFU: 15 deployable IFUs + 15 sky fibers

◆MLA + 20 fibers on 2''×3'' @ 0”52, R=10 000-40 000

●SINFONI: AO + NIR IFU

◆Slicer 32×64 @ 250, 100 or 25 mas/spx, R=2000-4000, 1.1-
2.45 µm
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VLT (2nd generation)
●MUSE: wide-field IFU

◆24 image slicers

◆FoV 60''×60'' @ 0”2/spx

◆R=3000, optical (480-930 nm)

◆HR-mode not yet functional

●KMOS: deployable IFUs

◆Fully cryogenic

◆24 deployable slicers of 2''8×2''8 @ 0''2/spx

◆Patrol field: 7'2 diameter

◆R~3000, IR (0.8-2.5 µm)
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5 m Hale Telescope (Palomar)
●Cosmic Web Imager: wide-field IFS (2009)

◆Image slicer ×24, 60''×40'', R=5000, 370-950 nm

●Oxford SWIFT: AO-fed IFS (2009)

◆Image slicer, 10''×21'' @0”23, R=4000, 0.65-1 µm

●Project 1640: AO + Lyot coronograph + IFS (2008)

◆MLA, 4''×4'', R=45, 0.9-1.8 µm

HR8799
Oppenheimer et al. 2013
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SAMI
●Sydney-AAO Multi-object Integral-field 
spectrograph

◆“Giraffe mode”: fiber-based multi-object IFU

◆13×61 fused hexabundles on a 1 sq.° FoV

◆Croom+ 2012MNRAS.421..872C

●SAMI galaxy survey of ~3400 galaxies in 3 years

◆Bryant+ 2015MNRAS.447.2857B

Bryant+ 2011MNRAS.415.2173B
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Hobby-Ederly 9.2m Telescope
●McDonald observatory (TX) 

●VIRUS-P: largest FoV (1.7' × 1.7')

◆VENGE, MASSIVE surveys

●VIRUS: massively parallel for HET Dark Energy Exp.

◆156 channels, 34 944 fibers on 78 IFUs on 22' FoV
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Algorithms
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Cube reconstruction (e.g. SNIFS)
●CCD preprocessing

◆Beware of all subtle 
effects: bias/dark 
structures, non-linearity, 
CTE, etc..

●Diffuse-light subtraction

●Instrument optical 
model

◆Unbiased flux extraction

●Spectral calibration

Control of biases at low 
flux levels
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Cube calibration
●Wavelength solution (per spx)

◆Using internal arc spectrum and/or sky lines

●Flat-field

◆Detector level: px-to-px gain fluctuations, spectrograph vignetting

▶Beware: the gain is chromatic, a FF might be difficult to acquire

◆Spatial directions: spx-to-spx transmission fluctuations (fibers, 
MLA), telescope vignetting

▶Internal reference (integrated sphere), twilight

◆Spectral direction: chromatic instrumental transmission

▶Internal reference (continuum spectrum), per spx

●Cosmic rays

◆At detector level (2D, e.g. pyCosmic) or at cube level (3D)
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Atmospheric Differential Refraction
●Dispersion by atmosphere

◆Refractive index n(λ, P, T, RH)

●2 observational quantities

◆Airmass X ≈ 1/cos(dz)

◆Parallactic angle η

●0th-order atmospheric 
refraction usually handled by 
telescope

◆Targeting and guiding done in a 
spectral band, e.g. V

◆Telescope can include AR 
corrector

●ADR = 1st-order terms 
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Atmospheric Differential Refraction
●3 types of ADR

◆Chromatic: source 
position in FP is function 
of λ

▶Offset dx, dy function of λ

◆Temporal: source position 
in FP is function of t

▶Blurring as function of λ

◆Spatial: both effects are 
functions of position in FP

▶ADR(x, y) for large FoV

●Use effective quantities

●E.g.: SNIFS, 0''43 / spx

◆Chromatic: few spx

◆Temporal: sub-spx

◆Spatial: ~0 (FoV 7''×7'')
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Sky background subtraction
●Best option: dedicated fibers or spaxels

◆Complex optical design

●DANGEROUS: FoV areas supposedly free of signal

◆The background inaccuracy is amplified by source extent

●Modeling of the sky spectrum (e.g. PCA)

◆OK for emission lines, not really for sky continuum
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3D PSF photometry
●FoV might be too small for 
accurate aperture 
photometry and sky 
subtraction

◆This is the case for 7''×7'' 
SNIFS

●Standard Kolmogorov 
profile is probably not 
adapted

◆Existence of a large-scale 
diffuse component

◆Described in the Fourier 
space

C. Buton (PhD 2009)



IFSC 2015 Yannick Copin 62

3D PSF photometry with SNIFS
●Empirical constrained 
Gaussian+Moffat model

◆Radial×azimuthal 
factorization

◆Trained on high-S/N 
standard stars

◆2 shape parameters: 
“Seeing” & “focus/guiding”

◆Chromatic modeling: 
ADR, seeing(λ)

▶ Flux accuracy: 0.7–1.5%

C. Buton (PhD 2009)
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Galaxy background subtraction (SNIFS)
●PSF photometry applies to point 
sources without structured 
background: standard stars or SNe 
without significant host galaxy

●For SNe with galaxy: diffuse 
background subtraction

◆Construction of a galaxy model from 
3D deconvolution

▶Use of reference exposures (once the SN has 
vanished)

▶Registration and PSF matching (seeing)

Residuals

Galaxy

t
0

t
0
 + 255d

SN+galaxy

SN

Bongard+2011
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Dithering & mosaicking
●Dithering: moving FoV by fraction of px/spx

◆Can circumvent spatial under-sampling (which is never good.)

◆Initially developed for HST imaging

▶Drizzle, 2002PASP..114..144F

●Applicable to 3D spectroscopy

◆Sharp+ 2015MNRAS.446.1551S

●Beware: resampling (ADR, dithering) induce covariant 
errors!
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Increase S/N

Should you try to increase the Signal/Noise?

◆Nothing is free: it will decrease the nb of independent 
measurements

◆Forward modeling: directly model the observations

▶χ² or maximum likelihood, Bayesian estimates

▶A precise knowledge of noise properties is crucial

▶The less you manipulate the data, the better

▶NO

◆Backward modeling: model quantities derived from 
observations

▶Sometimes a minimal S/N is required

▶MAYBE
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Minimal S/N

Cappellari 2009arXiv0912.1303C

●High S/N or linear model

◆χ² is (reasonably) quadratic 
in the parameters

◆MLE are unbiased

●Low S/N and non-linear

◆Quadratic approximation 
does not hold anymore

◆MLE are biased

●There's a minimal S/N 
requirement

◆It depends on your science 
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Smoothing vs. binning

How to increase Signal/Noise ?

◆Smoothing: introduce correlation and usually ignore it 
afterwards...

▶Boxcar filtering, Gaussian convolution, etc.

▶DON'T DO THIS: false sense of improvement!

◆Binning: explicitly regroup data in adjacent bins

▶Bins are (at least as) independent (as before)

▶Easy to implement in 1D

▶Trickier for higher dimension: ensure tessellation and 
compactness

◆Adaptive scheme

▶Preserve resolution while requesting minimal S/N
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Voronoi binning
●Cappellari & Copin 2003MNRAS.342..345C

●Very general objectives

◆Topological: proper tessellation (no hole nor overlap)

◆Morphological: as compact bin as possible

◆Uniformity: obj. fun. (e.g. S/N) as constant as possible

●Two steps

◆Bin accretion: describe bins as from the seeds of a Voronoi 
Tessellation

◆Bin regularization: build a Centroidal or Weighted Voronoi 
Tessellation

●Reference implementation in IDL/python
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Voronoi binnings

Cappellari & Emsellem 2004PASP..116..138C

Diehl & Statler 2006MNRAS.368..497D

Ibata+ 2009MNRAS.395..126I
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Photometry & kinematics
●Galaxy dynamics

◆Core quantity: distribution function f(x, y, z, vx, vy, vz)

●Resolved observations = integral along the LoS

◆Photometry: µ(x,y) = ∫ f d3v dz = 0th order

▶Modeling (e.g. GalFit): radial profile, flattening, PA, etc.

◆LOSVD: Lx,y(vz) = ∫ f dvx dvy dz

▶Complete kinematic information

▶v: 1st-order moment
▶σ, h3, h4, .: higher orders

● Kinemetry = quantify kinematic maps

◆Copin 00, Krajnovic+ 2006MNRAS.366..787K
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Kinemetry
●Basically a Fourier expansion of the 
kinematic fields in polar coordinates

◆E.g. v(r, φ) = v0 + ∑i vi cos(φ – φi)

●Two main usages

◆Quantify kinematic fields

▶Kinematic angle, twists

▶Kinematically Decoupled Core

◆Enforce specific symmetries

▶E.g. 2-integral Jean models are symmetric
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Spectro-photometric accuracy (SNIFS)
●From comparison to 
reference flux tables of std 
stars

◆UBVRI: 25 mmag (RMS)

▶P: 21 mmag, NP: 28 mmag

▶nMAD: 18 mag

◆B-V: 10 mmag (RMS)

●A lower bound

◆High flux regime (V<14)

◆No galaxy subtraction

●Standard star network at the 
mmag level

●SNIFS Calibration Apparatus
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Data format
●Traditional FITS

◆NAXIS=3 “true” cube (x, y, λ)

▶Ease of use: each slice is an image, each spx is a spectrum

▶Only for evenly sampled square spaxels OR require resampling

– TRY NOT RESAMPLING your cubes prior to analysis!

– WCS can help to manage spatial/spectral distortions

◆Euro3D format (Kissler-Patig+ 2004AN..325..159K)

▶Pure Multi-Extension FITS file

▶Spaxel-oriented: no need for resampling

●HDF5

◆Very versatile format, efficient IO
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Conclusions
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IFS pros and cons
●Pros

◆High multiplexing

◆Management of ADR

◆Full spectro-spatial PSF

▶Clean spectro-spatial 
disambiguation

◆Synthetic measurements

▶Binning, PSF photometry, .

▶Synthetic photometry is K-
correction free

◆Ease-of-use (e.g. 
targeting)

●Cons

◆“Complex” data 
treatment, format and 
analysis

◆Scattered light from 
spatial dissector (MLA, 
slicer)

It all depends on your 
science case!
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Look at your science case
●Your science case should drive your choice

◆Think the science objectives, express your technical 
constraints, find the best instrumental setup

◆IFS are most probably a good choice, but consider 
alternatives: slitless spectroscopy, MOS, imagery

●Be rigorous, trust statistics and respect Shannon

●Think out of the box

◆“Step back and think” is sometimes more efficient than 
“focus and work”

●Don't reinvent the wheel, improve the rocket!

◆Contribute to open source softwares
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The future of IFS
●Related activities

◆X-rays: X-IFU on Athena 
X-ray Observatory (2028+)

●Transverse/upcoming 
technologies

◆Hyperspectral imagers: 
multi-band imaging

▶Impressive performances in 
geoscience, medical imagery, 
etc.

▶Not used in astronomy, yet? 
(SED machine)

◆Integrated astro-photonics

▶Stationary-Wave Integrated 
Fourier Transform 
Spectrometer (
2014SPIE.9147E..29B)

▶Photonic Lantern/Arrayed 
Waveguide Gratings  (
2013MNRAS.428.3139H)

▶Binary optics: integrated 
diffractive optics (MLA)

◆Energy-sensitive detectors

▶Multi-layer detectors (e.g. 
commercial FOVEON X3)

▶Superconducting Tunneling 
Junction (R=10–100 in optical)
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3D spectroscopy in few words
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Project

https://dl.univ-lyon1.fr/995sivtoh4


