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Sheet 1 : Vectors & Operators

I. Vectors

Let |u⟩, |v⟩ be any two finite-norm vectors in the Hilbert space.

I.A Derive the Schwarz inequality

|⟨u|v⟩| ≤
√

⟨u|u⟩
√

⟨v|v⟩ .

I.B Show that

Tr(|u⟩⟨v|) = ⟨v|u⟩ .

II. Operators

Consider any two operators A, B.

II.A Show that

(AB)† = B†A† .

II.B Assuming that the inverse A−1 of A exists, derive an expression for (A− λB)−1

as a power series in λ :

(A− λB)−1 = A−1 + λA−1BA−1 + λ2A−1BA−1BA−1 + . . .

II.C If [[A,B], A] = 0, show that

[An, B] = nAn−1[A,B]

holds for all integers n ≥ 1.



III. Hermitian operators

Let A be a hermitian (self-adjoint) operator and let λa be the eigenvalue corresponding

to the eigenket |a⟩.

III.A Show that λa ∈ R , i.e. the eigenvalues of a A are real.

III.B Show that λa ̸= λa′ implies ⟨a|a′⟩ = 0, i.e. the eigenkets corresponding to

different eigenvalues are orthogonal.

III.C Wemay assume that the eigenkets {|a⟩} form an orthonormal basis of the Hilbert

space. Moreover, let |α⟩ be a normalized vector, and let |α⟩ =
∑

ca|a⟩ be its expansion
on the basis of eigenkets of the operator A. Show that∑

|ca|2 = 1 .

IV. Positive-definite operators

A hermitian operator A is called positive-definite if, for any vector |u⟩, ⟨u|A|u⟩ ≥ 0.

IV.A Show that the operator |a⟩⟨a| is hermitian and positive-definite.

IV.B If A is a hermitian positive-definite operator, then

|⟨u|A|v⟩| ≤
√

⟨u|A|u⟩
√
⟨v|A|v⟩ .

IV.C Show that TrA ≥ 0, and that the inequality is saturated if and only if A = 0.

V. Momentum operator

Let p̂ be the momentum operator in one dimension, conjugate to the position operator

x̂, i.e. [p̂, x̂] = −i~.

V.A For any integer n ≥ 1, show that

[p̂, x̂n] = −in~x̂n−1 .

Hint : take into account that [A,BC] = [A,B]C +B[A,C] for any operators A, B, C,

and proceed by induction.

V.B Show that

[p̂, f(x̂)] = −i~
∂

∂x̂
f(x̂) ,

where f(x) is a differentiable function of x.

V.C Show that

⟨x|p̂|x′⟩ = −i~
∂

∂x
δ(x− x′) .
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Sheet 2 : Measurements & Pictures

I. Operators and measurement

Consider the linear operators A and B of a three-dimensional Hilbert space :

A =
1

2

 5 0 0

0 2−
√
3 −3

0 −3 2 +
√
3

 , B =
1

2

 1 0 0

0 1 0

0 0 0

 .

I.A Are A, B (i) hermitian ? (ii) unitary ? (iii) projectors ?

I.B Compute [A,B].

I.C Compute the eigenvalues of A.

I.D A first measurement of the observalble A gives the highest eigenvalue of A. What

is the probability that an immediately subsequent measurement of the observable B

will give zero ?

I.E In which states can the observables A and B both be measured exactly at the

same time ?

II. Density operator

A system in a mixed state is described by the density operator :

ρ =
N∑

n=1

pn|ψn⟩⟨ψn| ,
N∑

n=1

pn = 1 ,

assuming for simplicity a discrete set of states in the sum above ; the |ψn⟩’s can be

assumed orthonormal ; the pn’s obey 0 ≤ pn ≤ 1. The density operator can be used

to describe a situation where the exact state of the system is not known, and one can

only say that the system has a probability pn to be in the state |ψn⟩. (ρ can also be

used to describe an ensemble of particles a fraction pn of which are in the state |ψn⟩).



Show that :

II.A tr(ρ) = 1.

II.B The system is in a pure state if and only if ρ is a projector.

II.C The system is in a pure state if and only if :

tr(ρ2) = 1.

II.D The expectation value of the observable A is given by :

⟨A⟩ = tr(ρA)

II.E In the Schrödinger picture the density operator obeys :

i~
∂ρ

∂t
= [H, ρ] ,

while in the Heisenberg picture it is time-independent.

III. Harmonic oscillator

Consider the simple harmonic oscillator with Hamiltonian :

H =
p̂2

2m
+
mω2x̂2

2
,

III.A Show that in terms of the annihilation, creation operators :

a :=

√
mω

2~

(
x̂+

ip̂

mω

)
, a† :=

√
mω

2~

(
x̂− ip̂

mω

)
,

which obey the commutation relations

[a, a†] = 1 ,

the Hamiltonian can also be expressed as :

H = ~ω(a†a+
1

2
) .

III.B Compute aH(t) and a
†
H(t).

III.C Prove the Hadamard lemma :

eXY e−X = e[X, ]Y (1)

:= Y + [X, Y ] +
1

2
[X, [X,Y ]] + . . . , (2)

and use this result to compute aH(t), a
†
H(t) directly (i.e. without solving the time

evolution first-order differential equation).

III.D Compute [x̂H(t1), x̂H(t2)] and [x̂H(t1), p̂H(t2)].
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Sheet 3 : Angular momentum & rotations

I. Parity & selection rules

The parity operator P reverses the sign of vectors, according to P : r → −r.

I.A Determine the parity of the state |lm⟩.

I.B Using the previous result, show that the matrix elements ⟨l′m′|z|lm⟩ vanish when

(l + l′) is even.

II. Rotations & position operator

II.A Determine the commutator [Lz, r], where r = (x, y, z) is the position vector

operator.

II.B Compute e−iφLz/~reiφLz/~ using the Hadamard lemma (see exercise sheet no.2)

II.C Rederive the previous result by taking into account that the angular momentum

is the generator of rotations.

III. Rotations & angular momentum

III.A Compute e−iφJx/~Jze
iφJx/~.

III.B Using the previous result and the relation between angular momentum and

rotation operators, Rn(θ) = e−iθn·J/~, prove that

Rñ(θ) = R̃ ·Rn(θ) · R̃−1 , (1)

where n and ñ are two unit vectors related by a rotation R̃ through

ñ = R̃ · n .

(Hint : you may identify n with ẑ and R̃ with Rx(φ).) What is the geometric interpre-

tation of eqn. (1) ?



IV. Pauli matrices & rotation operator

IV.A Consider two vector operators a, b which commute with the Pauli matrices, but

not necessarily with each other. Prove the identity :

(σ · a)(σ · b) = (a · b)I+ i(a× b)σ , (2)

where I is the two by two identity matrix and σ is a three-vector whose components

are the Pauli matrices,

σ := (σx, σy, σz) .

IV.B Use eqn. (2) to show that

eiθn·σ = I cos θ + in · σ sin θ ,

where n is a unit vector and θ is an arbitrary angle.

IV.C Use the previous result to compute the matrix elements of the rotation operator

Dj
mm′(α, β, γ), where

Dj
mm′(α, β, γ) = ⟨jm|D(α, β, γ)|jm′⟩ ,

for the special case j = 1/2.
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Sheet 4 : Spin & magnetic field

The electron (charge −e, mass me) is a particle of spin 1
2
. Consider an electron in

a uniform, time-independent magnetic field B⃗ = Bẑ along the z-axis. Neglecting all

other degrees of freedom, the Hamiltonian of the electron is given by

H = −µ⃗ · B⃗ ,

where µ⃗ = −e
me

S⃗ is the so-called magnetic moment.

I. Time evolution

I.A What is the interpretation of the sign in the expression for H ?

I.B Solve the eigenvalue problem for the Hamiltonian. (Set ω = eB
me

.)

I.C Determine the explicit expression for the time evolution operator U(t, t0 = 0).

Express your answer as a linear combination of the projectors |+⟩⟨+| and |−⟩⟨−|.

II. Larmor precession

Suppose that at t = 0 the electron is in an eigenstate |Ψ(0)⟩ of the operator Sx corres-

ponding to eigenvalue +~/2.

II.A Determine |Ψ(0)⟩ and |Ψ(t)⟩.

II.B What is the probability, as a function of time, for the electron to be in an eigens-

tate of Sx corresponding to eigenvalue ~/2 ?

II.C What are the expectation values, as functions of time, of Sx, Sy, Sz ?



III. Heisenberg picture

III.A Write down and solve the equations of motion satisfied by the time-dependent

operators SH
x , SH

y , SH
z in the Heisenberg picture.

III.B Verify your previous answer by a direct computation using the explicit form of

the time evolution operator computed in I.C.

III.C Verify that the expectation values of SH
x , SH

y , SH
z agree with those computed in

II.C in the Schrödinger picture.
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Sheet 5 : Addition of angular momenta

I. Coupling of two spins 1
2

Consider a system of two particles of spin 1
2
, i.e. j1 = 1

2
= j2, and let J1, J2 be their

respective spin operators. Moreover, let

{ |j1m1; j2m2⟩ := |j1m1⟩ ⊗ |j2m2⟩ with − j1 ≤ m1 ≤ j1 and − j2 ≤ m2 ≤ j2 }

be the orthonormal basis consisting of common eigenstates of the observables J 2
1 , J1z,

J 2
2 and J2z. The total angular momentum is defined by

J = J1 ⊗ 1l + 1l⊗ J2 ≡ J1 + J2 .

I.A Determine the matrices Jz and J 2 with respect to the basis |j1m1; j2m2⟩ by a

direct matrix calculation (i.e. using the matrix representation of the spin operators for

a particle of spin 1
2
).

I.B Verify your answer to the previous question by computing the action of the ope-

rators Jz and J 2 on the |j1m1; j2m2⟩ basis.

I.C Recover your previous results by computing the action of the operators Jz and J 2

on the |j1j2, JM⟩ basis, and using the table of Clebsch-Gordan coefficients.

II. Symmetric & antisymmetric tensor products

Consider the states |jm1; jm2⟩s, |jm1; jm2⟩a, j ∈ N, defined by

|jm1; jm2⟩s := |jm1; jm2⟩+ |jm2; jm1⟩
|jm1; jm2⟩a := |jm1; jm2⟩ − |jm2; jm1⟩ .

II.A Show that |jm1; jm2⟩s is a linear combination of states in the |jj, JM⟩ basis with
even angular momentum J .

II.B Show that |jm1; jm2⟩a is a linear combination of states in the |jj, JM⟩ basis with
odd angular momentum J .



III. Hyperfine structure of the hydrogen atom

Consider a hydrogen atom in the 1s state. Denote the Pauli spin operator for the

electron by σ⃗1 = (σ1x, σ1y, σ1z) (acting on the Hilbert space H1 of the spin states of the

electron) and the Pauli spin operator for the proton by σ⃗2 (acting on the Hilbert space

H2 of the spin states of the proton). In the presence of a uniform magnetic field in the

z-direction, B⃗ = (0, 0, B), the magnetic interaction terms in the Hamiltonian read

H = H0 +∆H , with H0 = Wσ⃗1 · σ⃗2 and ∆H = µB σ1z ,

where W and µ are real constants. The Hamiltonian H0 represents the magnetic dipole

interaction between the electron and proton ; the Hamiltonian ∆H describes the cou-

pling of the magnetic dipole moment of the electron with the external magnetic field

B⃗. (The coupling of the magnetic dipole moment of the proton with B⃗ is negligible as

compared to that of the electron.)

III.A In the case of a vanishing magnetic field, i.e. for H = H0, determine the eigen-

values and eigenstates of the Hamiltonian.

III.B Determine the eigenvalues and eigenstates of the Hamiltonian in the presence

of a non-vanishing magnetic field.

III.C Draw the eigenvalues of the previous question as functions of B. Label each

curve with the angular momentum of the corresponding eigenstate.
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Travaux Dirigés Quantum Mechanics

Sheet 6 : Many particles

I. Symmetrization & antisymmetrization

Consider the symmetrization & antisymmetrization operators S, A defined by :

S =
1

N !

∑
P , A =

1

N !

∑
(−)PP ,

where the sums above are over all permutations P of N particles. Show that S, A are

orthogonal projector operators, i.e. they satisfy

S2 = S , A2 = A , SA = AS = 0 .

II. Symmetric & antisymmetric tensor products

II.A Use the Clebsch-Gordan coefficients to obtain the |j1, j2, J,M⟩ states in terms of the

|j1m1; j2m2⟩ states, for a system of two particles of spin j1 = j2 = 1
2
. Compute the action

of S, A of the previous exercise on the |j1, j2, J,M⟩ states and comment on their symmetry

properties.

II.B Repeat the preceding computation for a system of two particles of spin j1,2 = 1.

Compare your answer with exercise II of sheet # 5.

III. Identical particles

III.A Show that for a system of two identical particles, each of which can be in one of n

quantum states, there are
1

2
n(n+ 1) symmetric

and
1

2
n(n− 1) antisymmetric

states of the system.

III.B Show that, if the particles have spin j, the ratio of symmetric to antisymmetric spin

states is (j + 1)/j.



IV. The two-body problem

Consider two particles of mass m1 and m2, respectively, whose interaction is given by a

potential V (r⃗1 − r⃗2). This system is described by the Hamiltonian

H =
1

2m1

p⃗ 2
1 +

1

2m2

p⃗ 2
2 + V (r⃗1 − r⃗2) .

In order to reduce this two-body problem to a one-body problem, one introduces the coor-

dinates of the center of mass and the coordinates of relative position

R⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

, r⃗ = r⃗1 − r⃗2 ,

as well as the total mass M and the reduced mass µ defined by

M = m1 +m2 ,
1

µ
=

1

m1

+
1

m2

.

IV.A Recall that in classical mechanics, the momentum P⃗ of the center of mass particle (of

mass M) and the momentum p⃗ of the relative particle (of mass µ) are respectively given by

P⃗ = p⃗1 + p⃗2 , p⃗ =
m2

M
p⃗1 −

m1

M
p⃗2 .

Show that the same relations hold in quantum mechanics between the operators of momen-

tum given by

p⃗1 =
~
i
∇⃗r⃗1 , p⃗2 =

~
i
∇⃗r⃗2 , P⃗ =

~
i
∇⃗R⃗ , p⃗ =

~
i
∇⃗r⃗ .

Furthermore, show that Heisenberg’s commutation relations for the pairs of canonical va-

riables (r⃗1, p⃗1) and (r⃗2, p⃗2), respectively, imply Heisenberg’s commutation relations for the

pairs of variables (r⃗, p⃗ ) and
(
R⃗, P⃗

)
, respectively.

IV.B Show that the Hamiltonian takes the following form if written in terms of the center

of mass and relative coordinates :

H = HCM +Hrel with

{
HCM = 1

2M
P⃗ 2

Hrel =
1
2µ
p⃗ 2 + V (r⃗ ) ,

where HCM describes the free motion of the center of mass while Hrel describes the dynamics

of a “relative particle” of mass µ in the potential V (r⃗ ) ; i.e. Hrel is a Hamiltonian for a

one-body problem.

IV.C Since the wave function for a free particle is given by a plane wave, we look for a

solution to the eigenvalue problem

HΨn = EnΨn

of the form

Ψn(R⃗, r⃗ ) = ei⃗k·R⃗ ψn(r⃗ ) .

Show that the energy levels of the two-body problem take the form

En =
~2k⃗ 2

2M
+ εn .

It follows from the above that the transition energies ~ωn,n′ := En − En′ do not depend on

the center of mass energy.

2
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Travaux Dirigés Quantum Mechanics

Sheet 7 : Time-independent perturbation theory

I. Non-degenerate two-level system

Consider a non-degenerate two-level system which is perturbed by a small time-independent

interaction. The perturbation is assumed to be non-diagonal with respect to the Hilbert

space basis consisting of eigenkets associated to the non-perturbed system. You may assume

that the solution of the eigenvalue problem for the non-perturbed system is known.

I.A Compare the energy corrections determined by an exact calculation with those found

by applying perturbation theory to second order.

I.B Compute the perturbed eigenstates to second order in perturbation theory. Compare

with the exact result. Discuss the normalization of vectors.

II. Anharmonic oscillator

A particle of mass m moving on the real axis (parametrized by x ∈ R) is subject to the

anharmonic potential

V (x) =
1

2
mω2x2 + λx4 ,

where the second term is assumed to be small compared to the first one.

II.A Recall that

x =

(
~

2mω

)1/2

(a+ a†)

and

a†|n⟩ =
√
n+ 1 |n+ 1⟩ , a|n⟩ =

√
n |n− 1⟩ ,

where |n⟩ is the energy eigenstate of the unperturbed hamiltonian at level n :

H0|n⟩ = E(0)
n |n⟩ , E(0)

n = ~ω(n+
1

2
) .

Determine ⟨n|x4|n⟩ and E
(1)
n .

What would be the effect (at the first order in perturbation theory) of a term x3 (rather

than x4) in the potential ?

(Hint : take into account the properties of the operators a and a†.)



II.B Use the wave function of the ground state of the harmonic oscillator :

Ψ0(x) =
(mω

π~

)1/4

e−
mω
2~ x2

,

in order to determine ⟨0|x4|0⟩ and E
(1)
0 .

What would be the effect (at the first order in perturbation theory) of a term x3 (rather

than x4) in the potential ?

(Hint : Recall that

∫ +∞

−∞
e−αx2

dx =
√

π/α ; use that to determine
∫ +∞
−∞ x2ne−αx2

dx. )

III. Variational method

III.A Use the variational method to estimate the ground-state energy of the anharmonic

oscillator of the previous exercise. Use the following test wavefunction :

φα = e−
1
2
αx2

.

Compare your result with that of the first-order perturbation theory. For simplicity you may

take ~ = m = ω = 1.

(Hint : Solve the resultant third-order equation in α perturbatively, to first order in λ.)

III.B Use the variational method to estimate the ground-state energy of the harmonic

oscillator. As a normalized test wavefunction take

φα(x) =

√
2

π
α3/2 1

x2 + α2
, α ∈ R∗ .

Make a sketch of the φα.

Compare your estimate for the ground state energy with the exact result and determine the

relative error.

(Hint : The following integrals appear in the calculation (after integrating by parts the

expression
∫
φαφ

′′
α dx) :∫ ∞

−∞

x2 dx

(x2 + α2)2
=

π

2α
,

∫ ∞

−∞

x2 dx

(x2 + α2)4
=

π

16α5
.

As in the previous exercise you may take ~ = m = ω = 1.)
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Sheet 8 : Time-independent perturbation theory II

I. Fine structure of the hydrogenic atom

In its simplest version, the quantum mechanical description of a hydrogenic atom is based

on the Hamiltonian

H0 =
p2

2m
+ Vc(r) =

p2

2m
− ~c

Zα

r
,

where Z is the atomic number and α = e2

4πε0~c '
1

137
the fine structure constant. (The energy

spectrum is reviewed in the notes). We can use two different orthonormal bases : the basis

given by the kets |n`m1
2
ms〉 which can be decomposed into radial, angular momentum and

spin momentum parts according to

|n`m1

2
ms〉 = |n`〉 |`m〉 |1

2
ms〉 ,

or the so-called coupled basis given by the kets |n`1
2
jmj〉 which can be decomposed into

radial and angular/spin momentum parts according to

|n`1

2
jmj〉 = |n`〉 |`1

2
jmj〉 .

I.A Specify the ranges of the quantum numbers n, `,m,ms, j,mj as well the degeneracy

level of E
(0)
n .

I.B The so-called spin-orbit term (i.e. the interaction between the magnetic moment asso-

ciated with the spin of the electron and the field of the nucleus which is in motion relative to

the electron) and the so-called Darwin term (i.e. the relativistic correction to the Coulomb

energy) yield the following perturbations of the Hamiltonian :

h1 =
1

2m2c2
1

r

dVc(r)

dr
~L · ~S , h2 =

~2

8m2c2
∇2Vc(r) .

Show that, for velocities of the electron which are small as compared to c, the theory of

relativity contributes the following correction to the kinetic energy of the electron :

h3 = − 1

2mc2

(
p2

2m

)2

.



I.C For each of these three perturbations, choose an appropriate basis, i.e. a basis with

respect which the perturbation operator is diagonal. Show that the corrections provided by

first order perturbation theory have the form

∆E1 = −E(0)
n

(Zα)2

n

[
Pj(`)

2`(`+ 1
2
)(`+ 1)

]
(for ` 6= 0)

∆E2 = −E(0)
n

(Zα)2

n
δ`,0

∆E3 = E(0)
n

(Zα)2

n

[
1

`+ 1
2

− 3

4n

]
,

where

Pj(`) =

{
` if j = `+ 1

2

−(`+ 1) if j = `− 1
2
.

I.D Show that the fine structure of the energy level E
(0)
n does not explicitly depend on the

quantum number ` and that the total correction to E
(0)
n as given by first order perturbation

theory reads

∆E = E(0)
n

(Zα)2

n

[
1

j + 1
2

− 3

4n

]
.

II. Helium-like atom

Using the variational method, find the ground state energy of an atom with two electrons

and a nuclear number Z, using a trial wavefunction of the form

ψ(r1, r2) =

(
Z ′3

πa30

)
e−Z

′r1/a0e−Z
′r2/a0 .

where r1, r2 are the distances of the two electrons from the nucleus, a0 is the Bohr radius, α

is the fine structure constant, and Z ′ is an adjustable parameter. The Hamiltonian describing

the system is given by :

H =
p21
2m

+
p21
2m
− ~c

Zα

r1
− ~c

Zα

r2
+ ~c

α

r12
,

where r12 := |r1 − r2|.

III. WKB approximation

We have seen that in the WKB approximation to first order in ~, the time-independent part

of the wavefunction becomes :

ψ(x) =
c1√
p
e

i
~
∫
dxp(x) +

c2√
p
e−

i
~
∫
dxp(x) ,

where c1, c2 are constants and

p(x) :=
√

2m(E − V (x)) .

What is the modification to the above expression for ψ(x) at the next order in ~ ?

2
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Sheet 9 : WKB, Interaction picture

I. Bohr-Sommerfeld quantization

A particle moves in a potential well V (x) such that for energy E ≥ V (x) there are exactly

two turning points. Show that in the WKB approximation the discrete energy levels are

determined by the condition∫ b

a

p(x)dx = π~(n+
1

2
), n ∈ N ,

where a, b are the turning points given by V (a) = V (b) = E and b > a ; the position-

dependent momentum is given by p(x) :=
√

2m(E − V (x)).

II. Time evolution operator

We have seen that the time evolution operator in the interaction picture takes the form of a

Dyson series expansion :

UI(t, t0) = 1 +
∞∑
n=1

U (n)(t, t0) ,

where

U (n)(t, t0) =

(
1

i~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnHpI(t1) · · ·HpI(tn) ,

and HpI is the perturbation in the interaction picture.

II.A Using the above expression, verify explicitly that UI(t, t0) obeys the differential equa-

tion :

i~
d

dt
UI(t, t0) = HpI(t)UI(t, t0) .

II.B Show that

U (n)(t, t0) =
1

n!

(
1

i~

)n ∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnT [HpI(t1) · · ·HpI(tn)] ,

where the time-ordering operator T is defined by

T [A1(t1) · · ·An(tn)] = AP (1)(tP (1)) · · ·AP (n)(tP (n)) ,

and P is the permutation of n indices for which

tP (1) > tP (2) > · · · > tP (n) .



III. Interaction picture

Consider a particle of massmmoving under the influence of a time-dependent one-dimensional

potential VS(t, x) (in the Schrödinger picture).

III.A Treating VS(t, x) as a perturbation, solve the equations of motion for the position and

momentum operators xI(t), pI(t) in the interaction picture.

III.B Compute the commutators [xI(t1), xI(t2)], [pI(t1), pI(t2)], [xI(t1), pI(t2)].

III.C Consider two operators OS, O′
S (in the Schrödinger picture) such that

[OS,O′
S] = 0 .

Show that

[OI(t),O′
I(t)] = 0 .

Compare with the result of the previous exercise.
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I. Two-state system

Consider the two-state system described, in the Schrödinger picture, by the Hamiltonian

H = H0 +Hp where :

H0 = E1|1〉〈1| + E2|2〉〈2|
Hp = γeiωt|1〉〈2| + γe−iωt|2〉〈1|

(1)

where γ, ω are real and positive, and E2 > E1.

I.A For a general state |ψ(t)〉I in the interaction picture, we expand

|ψ(t)〉I =
∑
n

cn(t)|n〉 ,

where {|n〉} is an orthonormal set of eigenstates of the unperturbed Hamiltonian H0. Use

the explicit form of the time-evolution operator to express the coefficients cn(t) in a series

expansion in the perturbation Hp.

I.B Assuming that at t = 0 the system is in its ground state |1〉, and treating Hp as a

perturbation, use the result of the previous exercise to determine |c1(t)|2, |c2(t)|2 for the wa-

vefunction of the system (1) to the first non-vanishing order in time-dependent perturbation

theory.

I.C Determine |c1(t)|2, |c2(t)|2 exactly by solving a coupled system of first-order differential

equations for c1(t), c2(t) ; compare with the previous result.

II. Charged harmonic oscillator

A one-dimensional charged harmonic oscillator (charge e, mass m, angular frequency ω) is

in its ground state for t < t0. At time t0 a constant electric field is turned on. Determine,

to first order in time-dependent perturbation theory, the probability that at time t > t0 the

oscillator is in the n-th excited state.



III. Hydrogen atom

A hydrogen atom in its 1s ground state is placed in a uniform time-dependent electric field

given by :

~E =

{
0 , t < 0

E0e
−t/τ ẑ , t > 0

,

where ẑ is the unit vector in the positive z axis, and E0, τ are constants.

III.A Derive the electric potential and the corresponding perturbation Hp for t > 0.

III.B Compute the probability that at time t >> τ the hydrogen atom is in the state 2s.

III.C Repeat the previous exercise for each of the three 2p states.

Hint : Take into account that z =
√

4π/3 rY10. The wavefunction of the state with quantum

numbers n,l,m is given by : Ψnlm(~r) = Rnl(r)Ylm(θ, ϕ). You may further assume that the

radial integrals

I1 :=

∫ ∞
0

drr3R∗20(r)R10 , I2 :=

∫ ∞
0

drr3R∗21(r)R10 ,

are known and non-vanishing.
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I. Linear response

We would like to study the change of the expectation value of the operator A (in the Schrödin-

ger picture) under the influence of a perturbation :

Hp = −B b(t) ,

where B is a time-independent operator, and the time-dependent function b(t) represents the

strength of the perturbation. We shall assume that at t → −∞ the system is in an energy

eigenstate |n〉 of the unperturbed hamiltonian H0 with eigenvalue E0
n. The time-dependent

change 〈δA(t)〉n of the expectation value of the operator A is given by :

〈δA(t)〉n = 〈Ψn(t)|A|Ψn(t)〉 − 〈n|A|n〉 ,

where |Ψn(t)〉 is the state of the system at time t.

I.A The linear response function Xn
AB is defined by

〈δA(t)〉n =

∫ ∞
−∞

dt1X
n
AB(t− t1)b(t1) .

Show that

Xn
AB(t) =

i

~
Θ(t)

∑
m

(
〈n|A|m〉〈m|B|n〉e−iωmnt − 〈n|B|m〉〈m|A|n〉eiωmnt

)
,

where ωmn := (E0
m − E0

n)/~ and Θ is the step function :

Θ(x) =

{
1 , x > 0

0 , x < 0
.

I.B The Fourier transform f̃(ω) of a function f(t) is given by

f(t) =

∫ ∞
−∞

dω

2π
f̃(ω)e−iωt .

Show that the Fourier transform of a convolution :

C(t) =

∫ ∞
−∞

dt1f(t− t1)g(t1) ,



is given by the product of the Fourier transforms : C̃(ω) = f̃(ω)g̃(ω) . Use this result to show

that the Fourier transform of 〈δA(t)〉n reads : 〈δ̃A(ω)〉n = X̃n
AB(ω)b̃(ω) , where the Fourier

transform of the linear response is given by :

X̃n
AB(ω) =

1

~
∑
m

(
〈n|A|m〉〈m|B|n〉
ωmn − ω − iε

− 〈n|B|m〉〈m|A|n〉
ωnm − ω − iε

)
. (1)

Hint : You may use the integral representation of the step function :

Θ(t) = − lim
ε→0

∫ ∞
−∞

dω

2πi

e−iωt

ω + iε
.

II. Polarizability

We would now like to apply formuma (1) to the case of atoms in a time-dependent electric

field. Consider the perturbation :

Hp = eẑE(t) ,

where e is the charge of the electron, ẑ is the position operator in the direction of the z-

axis, and E(t) is a time-dependent electric field ; the operator B of the previous exercise

now corresponds to the dipole operator D := eẑ, while b(t) corresponds to E(t). The above

perturbation leads to an induced dipole moment

〈δ̃D(ω)〉n = X̃n
DD(ω)Ẽ(ω) ,

i.e. the operator A of the previous exercise also corresponds to D. The linear response

function Xn
DD is called polarizability.

II.A Show that

X̃n
DD(ω) =

e2

me

∑
m

fmn
ω2
mn − (ω + iε)2

, (2)

where me is the electron mass and fmn is the so-called oscillator strength :

fmn :=
2me

e2~
ωmn|〈m|D|n〉|2 .

II.B Consider formula (2) for the ground state n = 0. Near the resonance frequency ω ∼ ωm0

it breaks down. In this case higher energy eigenstates |m〉 are excited, with life expectancy

Γ−1m . One can take this into account by formally complexifying the corresponding energy

eigenvalue E0
m → E0

m − i
2
~Γm. Compute the polarizability in the case where ω ∼ ωm0.

II.C It is known from electrodynamics that the polarizability is related to the dielectric

constant E via :

E = 1 + CX̃0
DD ,

where C is a real constant proportional to the number of atoms per volume. Determine and

draw the real and imaginary parts of E as a function of ω.

Interpretation : The dielectric constant is related to the refractive index n and the absorption

coefficient κ through E = (n + iκ)2. In the case of an incoming electric field of the form of

a plane wave Ez = E0e
i(kx−ωt), inside the medium we obtain Ez = E0e

−κkxei(nkx−ωt) ; i.e. n

determines the dispersion and κ the absorption.
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I. Scattering off a hard sphere

Consider the scattering of an incoming wave eikz off a hard sphere of radius a, i.e. a spherically

symmetric potential of the form

V (r) =

{
∞ , r ≤ a

0 , r > a
.

I.A Take into account the symmetries of the system to justify the following ansatz for the

wavefunction :

ψ(r) =
∞∑
l=0

Rl(r)Pl(cos θ) .

Determine the differential equation obeyed by the radial part Rl(r). Solve for Rl(r) by taking

into account the boundary condition at r = a and the asymptotic form of the wavefunction :

ψ(r) −→
r→∞

eikz + f(k, θ)
eikr

r
.

I.B Determine sin2 δl, where δl is defined through :

f(k, θ) =
1

k

∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ) .

Compute the total cross section σtot.

I.C Argue that for ka << 1 the l = 0 term in the partial wave sum dominates the total

cross section ; this is the case of the so-called s-wave scattering. Compute σtot in this limit

and compare with the classical cross section.

I.D Consider now the opposite limit ka >> 1. In this case one may ignore the terms l > l0,

where l0 ∼ ka. Compute σtot in this limit and compare with the classical cross section.

II. Scattering off a spherical well

Consider now an attractive spherically symmetric potential well

V (r) =

{
−V0 , r ≤ a

0 , r > a
,



where V0 > 0.

II.A We shall consider the case of s-wave scattering, ka << 1, so that the partial waves

with l ≥ 1 may be ignored. Making the same ansatz for the wavefunction as in the previous

exercise, determine the wavefunction by taking into account the boundary condition at r = 0

and the r → ∞ asymptotics, and imposing continuity for the wavefunction and its first

derivative at r = a. Determine tan δ0.

II.B Assume in addition that
k

q
tan(qa) << 1 ,

where q2 := 2m(E + V0)/~2. Use the previous result for tan δ0 to compute σtot in this limit.

Under what condition do we have σtot = 0 ?

The vanishing of the total cross section for certain values of the energy of the incoming wave

(observed in particular in the scattering of low-energy electrons by atoms of a noble gas)

goes under the name Ramsauer-Townsend effect and has no classical analogue.

III. Born approximation

Determine the differential cross section dσ/dΩ in the Born approximation for the Yukawa

potential V (r) = V0e
−αr/r. In which limit is the Rutherford formula (for scattering off a

Coulomb potential) recovered ? Compute the total cross section σtot.

Useful formulæ : The spherical Bessel and Neumann functions jl(ρ), nl(ρ) are linearly

independent solutions of the differential equation

f ′′l (ρ) +
2

ρ
f ′l (ρ) + fl(ρ)− l(l + 1)

ρ2
fl(ρ) = 0 ,

where a prime denotes differentiation with respect to ρ. Their asymptotics are given by :

jl(ρ) =

{
ρl/(2l + 1)!! , ρ→ 0

sin(ρ−lπ/2)
ρ

, ρ→∞

nl(ρ) =

{
−(2l + 1)!!/[(2l + 1)ρl+1] , ρ→ 0

− cos(ρ−lπ/2)
ρ

, ρ→∞ ,

where (2l + 1)!! = 1 · 3 · · · (2l + 1). For l = 0 we have :

j0(ρ) =
sin ρ

ρ
, n0(ρ) = −cos ρ

ρ
.

The spherical Hankel functions of the first and second kind are the linear combinations

h
(1)
l (ρ) := jl(ρ) + inl(ρ) , h

(2)
l (ρ) := jl(ρ)− inl(ρ) ,

with asymptotics :

h
(1)
l (ρ) −→

ρ→∞
(−i)l+1 e

iρ

ρ
, h

(2)
l (ρ) −→

ρ→∞
il+1 e

−iρ

ρ
.

We also have :

eikz =
∞∑
l=0

(2l + 1)ilPl(cos θ)jl(kr) .
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