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Travaux Dirigés Quantum Mechanics

Sheet 1 : Vectors & Operators

I. Vectors

Let |u), |v) be any two finite-norm vectors in the Hilbert space.

I.A Derive the Schwarz inequality
[(ulv)] < V/(ulu)v/{vlv) -

I.B Show that

II. Operators

Consider any two operators A, B.

II.A Show that
(AB)' = BTA' .

II.B Assuming that the inverse A~! of A exists, derive an expression for (A — AB)™!
as a power series in A :

(A—AB) ' = A '+ AA'BA™ + NA'BA'BA™ + ..
II.c If [[A, B], A] = 0, show that
[A", B] = nA""'[A, B

holds for all integers n > 1.



III. Hermitian operators

Let A be a hermitian (self-adjoint) operator and let A, be the eigenvalue corresponding
to the eigenket |a).

ITII.A Show that A\, € R | i.e. the eigenvalues of a A are real.

III.B Show that A\, # Ay implies (ala’) = 0, i.e. the eigenkets corresponding to
different eigenvalues are orthogonal.

ITII.C We may assume that the eigenkets {|a)} form an orthonormal basis of the Hilbert
space. Moreover, let |a) be a normalized vector, and let |a) = > ¢,|a) be its expansion
on the basis of eigenkets of the operator A. Show that

D e =1

IV. Positive-definite operators

A hermitian operator A is called positive-definite if, for any vector |u), (u|A|u) > 0.
IV.A Show that the operator |a)(a| is hermitian and positive-definite.

IV.B If A is a hermitian positive-definite operator, then

[(ul Alo)| < v/(ulAJu) v/ (v] Alv) .

IV.C Show that TrA > 0, and that the inequality is saturated if and only if A = 0.

V. Momentum operator

Let p be the momentum operator in one dimension, conjugate to the position operator
z,1.e. [p, 2] = —ih.
V.A For any integer n > 1, show that

[p, 2"] = —inha" " .

Hint : take into account that [A, BC| = [A, B]C + B[A, C] for any operators A, B, C,
and proceed by induction.

V.B Show that

0

S H(aY] — —ih N
bS] = —ih- (2)
where f(x) is a differentiable function of x.

V.C Show that 9
(x|pla’) = —ih%é(x —a').
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Sheet 2 : Measurements & Pictures

I. Operators and measurement

Consider the linear operators A and B of a three-dimensional Hilbert space :

. 5 0 0 . 100
A:§ 0 2—+3 -3 , B:5 010
0 -3 2443 000

I.A Are A, B (i) hermitian ? (ii) unitary ? (iii) projectors?
I.B Compute [A, B].
I.c Compute the eigenvalues of A.

I.D A first measurement of the observalble A gives the highest eigenvalue of A. What
is the probability that an immediately subsequent measurement of the observable B
will give zero?

I.E In which states can the observables A and B both be measured exactly at the
same time ?

II. Density operator

A system in a mized state is described by the density operator :

N N
p= palta)Wul, D pa=1,
n=1 n=1

assuming for simplicity a discrete set of states in the sum above; the |¢,)’s can be
assumed orthonormal; the p,’s obey 0 < p, < 1. The density operator can be used
to describe a situation where the exact state of the system is not known, and one can
only say that the system has a probability p, to be in the state |¢,). (p can also be
used to describe an ensemble of particles a fraction p, of which are in the state [¢,)).



Show that :
IL.A tr(p) =1.
II.B The system is in a pure state if and only if p is a projector.

II.C The system is in a pure state if and only if :
tr(p?) = 1.
II.D The expectation value of the observable A is given by :

(4) = tr(pA)

II.LE In the Schrodinger picture the density operator obeys :

L Op
Zha - [H7p] )

while in the Heisenberg picture it is time-independent.

III. Harmonic oscillator

Consider the simple harmonic oscillator with Hamiltonian :

9 22
i mw?a
H=—
2m+ 2 7

III.A Show that in terms of the annihilation, creation operators :

oy mw . p o e mw o p
“V 2n mw/) ’ “V o2n mw/) '

which obey the commutation relations
[a,a’] =1,
the Hamiltonian can also be expressed as :

1
H = hw(a'a + 5) :

IIL.B Compute ay(t) and al,(t).
III.Cc Prove the Hadamard lemma :

XYe X =X ly (1)
=Y XYY 2)

and use this result to compute ag(t), al,(t) directly (i.e. without solving the time

evolution first-order differential equation).

III.D Compute [Z5(t1), 2 (t2)] and [Zx(t1), P (t2)].



Master M1 Parcours International 2010-2011
IPNL, Université Lyon 1

Travaux Dirigés Quantum Mechanics

Sheet 3 : Angular momentum & rotations

I. Parity & selection rules

The parity operator P reverses the sign of vectors, according to P : r — —r.
I.A Determine the parity of the state |Im).

I.B Using the previous result, show that the matrix elements (I'm’|z|lm) vanish when
(l+1) is even.

II. Rotations & position operator

IT.A Determine the commutator [L,,r], where r = (x,y,z) is the position vector
operator.

II.B Compute e~ =/"rei#l=/" using the Hadamard lemma (see exercise sheet 1n0.2)

I1.C Rederive the previous result by taking into account that the angular momentum
is the generator of rotations.

III. Rotations & angular momentum

III.A Compute e~ /=/" J ei¢Je/h,

I11.B Using the previous result and the relation between angular momentum and

rotation operators, Ry, (0) = e~ /" prove that

Ra() = R-Ry(0) - R, (1)
where n and n are two unit vectors related by a rotation R through

n=~R-n.

(Hint : you may identify n with z and R with R,().) What is the geometric interpre-
tation of eqn. (1)7



IV. Pauli matrices & rotation operator

IV.A Consider two vector operators a, b which commute with the Pauli matrices, but
not necessarily with each other. Prove the identity :

(0-a)(o-b) = (a-b)+i(ax b, 2)

where I is the two by two identity matrix and o is a three-vector whose components
are the Pauli matrices,
0= (04,04,0;) .
IV.B Use eqn. (2) to show that
6i9n-a

=Ilcosf +in-osinf ,

where n is a unit vector and # is an arbitrary angle.

IV.C Use the previous result to compute the matrix elements of the rotation operator
D! (o, ,7), where

D}, B,7) = (jm|D (v, B,7)]jm’) .

for the special case j = 1/2.
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The electron (charge —e, mass m,) is a particle of spin % Consider an electron in
a uniform, time-independent magnetic field B = BZ along the z-axis. Neglecting all
other degrees of freedom, the Hamiltonian of the electron is given by

H=—ji-B,

where (i = ;1—65’ is the so-called magnetic moment.

I. Time evolution

I.A What is the interpretation of the sign in the expression for H 7

L.B Solve the eigenvalue problem for the Hamiltonian. (Set w = <£.)

I.C Determine the explicit expression for the time evolution operator U(t,t, = 0).
Express your answer as a linear combination of the projectors |[+)(+| and |—){—].

II. Larmor precession

Suppose that at ¢ = 0 the electron is in an eigenstate |¥(0)) of the operator S, corres-
ponding to eigenvalue +h/2.

IT.A Determine |¥(0)) and |¥(¢)).

II.B What is the probability, as a function of time, for the electron to be in an eigens-
tate of S, corresponding to eigenvalue i/27?

II.C What are the expectation values, as functions of time, of S, Sy, S, 7



III. Heisenberg picture

III.A Write down and solve the equations of motion satisfied by the time-dependent
operators S, S/, S in the Heisenberg picture.

II1.B Verify your previous answer by a direct computation using the explicit form of
the time evolution operator computed in I.C.

III.C Verify that the expectation values of SI', SJ', S agree with those computed in
I1.C in the Schrodinger picture.
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Sheet 5 : Addition of angular momenta

I. Coupling of two spins %

Consider a system of two particles of spin %, ie. j1 = % = jo, and let Jy, J5 be their

respective spin operators. Moreover, let
{ [71my; jame) := |jim1) @ |jama) with —j1 <my <j; and —jo <my < jo }

be the orthonormal basis consisting of common eigenstates of the observables JZ, Jy.,
J 22 and Jo,. The total angular momentum is defined by

J = J1®]1+]1®J2 = J1+J2.

I.A Determine the matrices J, and J? with respect to the basis |jimy;jams) by a
direct matrix calculation (i.e. using the matrix representation of the spin operators for
a particle of spin 7).

I.B Verify your answer to the previous question by computing the action of the ope-
rators J, and J2 on the [jimy; joms) basis.

I.C Recover your previous results by computing the action of the operators .J, and J?
on the |jj2, JM) basis, and using the table of Clebsch-Gordan coefficients.

II. Symmetric & antisymmetric tensor products

Consider the states [jmq; jma)s, [jma; jma)a, j € N, defined by

|jma; jma)s = |jma; jma) + [jma; jma)

[Jma; jma)a = |jma; jma) — |jma; jma) .
II.A Show that |jmy; jms)s is a linear combination of states in the |jj, JM) basis with
even angular momentum .J.

II.B Show that |jmy; jma), is a linear combination of states in the |jj, JM) basis with
odd angular momentum J.



III. Hyperfine structure of the hydrogen atom

Consider a hydrogen atom in the 1s state. Denote the Pauli spin operator for the
electron by ¢ = (014, 014, 01.) (acting on the Hilbert space H; of the spin states of the
electron) and the Pauli spin operator for the proton by &5 (acting on the Hilbert space
Hs of the spin states of the proton). In the presence of a uniform magnetic field in the
z-direction, B= (0,0, B), the magnetic interaction terms in the Hamiltonian read

H:H0+AH, with H0:W51-52 and AH:MBalz,

where W and p are real constants. The Hamiltonian H| represents the magnetic dipole
interaction between the electron and proton ; the Hamiltonian AH describes the cou-
pling of the magnetic dipole moment of the electron with the external magnetic field
B. (The coupling of the magnetic dipole moment of the proton with Bis negligible as
compared to that of the electron.)

III.A In the case of a vanishing magnetic field, i.e. for H = H, determine the eigen-
values and eigenstates of the Hamiltonian.

III.B Determine the eigenvalues and eigenstates of the Hamiltonian in the presence
of a non-vanishing magnetic field.

III.c Draw the eigenvalues of the previous question as functions of B. Label each
curve with the angular momentum of the corresponding eigenstate.
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Sheet 6 : Many particles

I. Symmetrization & antisymmetrization

Consider the symmetrization & antisymmetrization operators S, A defined by :

S= P, A=Y ()P

where the sums above are over all permutations P of N particles. Show that S, A are
orthogonal projector operators, i.e. they satisfy

S?2=S5, A=A, SA=AS=0.

II. Symmetric & antisymmetric tensor products

II.A Use the Clebsch-Gordan coefficients to obtain the |ji, jo, J, M) states in terms of the
|j1may; jame) states, for a system of two particles of spin j; = j, = % Compute the action
of S, A of the previous exercise on the |ji, jo, J, M) states and comment on their symmetry
properties.

II.B Repeat the preceding computation for a system of two particles of spin j;o = 1.
Compare your answer with exercise II of sheet # 5.

III. Identical particles

IITI.A Show that for a system of two identical particles, each of which can be in one of n
quantum states, there are

1 .
5 n(n+1) symmetric
and 1
) n(n —1) antisymmetric
states of the system.

II1.B Show that, if the particles have spin j, the ratio of symmetric to antisymmetric spin
states is (j +1)/7.



IV. The two-body problem

Consider two particles of mass m; and mo, respectively, whose interaction is given by a
potential V(7 — 7). This system is described by the Hamiltonian

1 —
H = p12+
1

—92 — —
Virh—73).

2m 2ms Py + V(i 2)

In order to reduce this two-body problem to a one-body problem, one introduces the coor-

dinates of the center of mass and the coordinates of relative position

= Mgty + Moty S L
R=———7—", r=mT—T2,
mi + Mo
as well as the total mass M and the reduced mass p defined by

1 1 1
M:m1+m2, - = — 4+ —.
2 my Mg
IV.A Recall that in classical mechanics, the momentum P of the center of mass particle (of
mass M) and the momentum p of the relative particle (of mass p) are respectively given by
5 o - - Mo my
P =p) + ps, =—p1— —Pa.
P1 T P2 p M b M D2
Show that the same relations hold in quantum mechanics between the operators of momen-
tum given by

h - h - h

ﬁlvaFla ﬁQZTvFQ7 P:TVE’ ﬁ: VF-

i
Furthermore, show that Heisenberg’s commutation relations for the pairs of canonical va-
riables (71, p1) and (7%, pa), respectively, imply Heisenberg’s commutation relations for the

pairs of variables (7, ) and <ﬁ, P ), respectively.

IV.B Show that the Hamiltonian takes the following form if written in terms of the center
of mass and relative coordinates :
Hen = 557 P2

H=Hcy+ Hee with . .
oM : {Hre1:$p2+v(r)v

where Hcyy describes the free motion of the center of mass while H.. describes the dynamics
of a “relative particle” of mass p in the potential V() ; i.e. Hy is a Hamiltonian for a
one-body problem.

IV.C Since the wave function for a free particle is given by a plane wave, we look for a
solution to the eigenvalue problem

HVY,=FE,\V,
of the form o
U, (R, 7) = e, (7).
Show that the energy levels of the two-body problem take the form

k>
E,=——+¢,.
S +€
It follows from the above that the transition energies hAw, v := E, — £,/ do not depend on

the center of mass energy.
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Sheet 7 : Time-independent perturbation theory

I. Non-degenerate two-level system

Consider a non-degenerate two-level system which is perturbed by a small time-independent
interaction. The perturbation is assumed to be non-diagonal with respect to the Hilbert
space basis consisting of eigenkets associated to the non-perturbed system. You may assume
that the solution of the eigenvalue problem for the non-perturbed system is known.

I.A Compare the energy corrections determined by an exact calculation with those found
by applying perturbation theory to second order.

I.B Compute the perturbed eigenstates to second order in perturbation theory. Compare
with the exact result. Discuss the normalization of vectors.

II. Anharmonic oscillator

A particle of mass m moving on the real axis (parametrized by x € R) is subject to the
anharmonic potential

1
Vix) = imwQ:BQ + Az,

where the second term is assumed to be small compared to the first one.

II.A Recall that
B\ /2

a'ln) =vn+1ln+1),  aln)=+nln—-1),

where |n) is the energy eigenstate of the unperturbed hamiltonian at level n :

and

1
Holn) = EOln) . BY) = huo(n + )

Determine (n|z*|n) and ES".

What would be the effect (at the first order in perturbation theory) of a term z* (rather
than z') in the potential ?

(Hint : take into account the properties of the operators a and a'.)



II.B Use the wave function of the ground state of the harmonic oscillator :

mw>1/4 mw 2
e

- 2n
7h

Wo(z) = (

in order to determine (0|z*|0) and E(gl).

What would be the effect (at the first order in perturbation theory) of a term 3 (rather

than z*) in the potential ?
+o0o

(Hint : Recall that / e~ dx = \/7 /o ; use that to determine fj;o w2ne= o . )

—0o0

II1. Variational method

III.A Use the variational method to estimate the ground-state energy of the anharmonic
oscillator of the previous exercise. Use the following test wavefunction :

2

1
Yo =€ Phad

Compare your result with that of the first-order perturbation theory. For simplicity you may
take h=m=w = 1.
(Hint : Solve the resultant third-order equation in a perturbatively, to first order in \.)

III.B Use the variational method to estimate the ground-state energy of the harmonic
oscillator. As a normalized test wavefunction take

2 ., 1
=/2a¥?—— e R*.
8004(1‘) ﬂ'a $2+O{2’ o

Make a sketch of the .

Compare your estimate for the ground state energy with the exact result and determine the
relative error.

(Hint : The following integrals appear in the calculation (after integrating by parts the
expression [ @ap% dz) :

/°° x?dx . /OO x?dx o
oo (P2 F02)2 T 20 oo (2 a2)t T 160

As in the previous exercise you may take h=m =w = 1.)
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Sheet 8 : Time-independent perturbation theory Il

I. Fine structure of the hydrogenic atom

In its simplest version, the quantum mechanical description of a hydrogenic atom is based

on the Hamiltonian ) ) p
p p o
Hy=—+V.(r)=— —hc— ,
"7 om (r) 2m r
62
Treche = % the fine structure constant. (The energy

spectrum is reviewed in the notes). We can use two different orthonormal bases : the basis

where Z is the atomic number and o =

given by the kets |n€m%ms> which can be decomposed into radial, angular momentum and
spin momentum parts according to

1 1
|n€m§ms> = |nf) |¢m) |§ms>,

or the so-called coupled basis given by the kets |n€% gm;) which can be decomposed into
radial and angular/spin momentum parts according to

1. L.
[nlzgmy) = [nt) |t55my) .

I.A Specify the ranges of the quantum numbers n, ¢, m, my, j,m; as well the degeneracy
level of Er(LO).

I.B The so-called spin-orbit term (i.e. the interaction between the magnetic moment asso-
ciated with the spin of the electron and the field of the nucleus which is in motion relative to
the electron) and the so-called Darwin term (i.e. the relativistic correction to the Coulomb
energy) yield the following perturbations of the Hamiltonian :

1 1 d%(’l‘) E = h2

YT om2e2 v dr ’ 27 8m2e2

V2V, (r).

Show that, for velocities of the electron which are small as compared to ¢, the theory of
relativity contributes the following correction to the kinetic energy of the electron :

1 2\ 2
hy = — )
2me? \ 2m




I.c For each of these three perturbations, choose an appropriate basis, i.e. a basis with
respect which the perturbation operator is diagonal. Show that the corrections provided by
first order perturbation theory have the form

Za)? P;(0)
AE, = —E(O)( J for ¢ # 0
! " 20+ Dot (for £70)
2
A@::-@M%?@p
AE, — poZo [ L 3
3 " n é—k% dn |’
where ,
B ¢ if j=¢+1
PJ(@_{—(HU if j=0—3.

I.D Show that the fine structure of the energy level E? does not explicitly depend on the

quantum number ¢ and that the total correction to EY as given by first order perturbation

Ap—po [ 1 3
" oon j+3 4n)’

theory reads

II. Helium-like atom

Using the variational method, find the ground state energy of an atom with two electrons
and a nuclear number Z, using a trial wavefunction of the form

Z" ) /
W(ry,re) = ( 3) e~ Zmi/a0e=2r2/a0

Tag

where rq, 9 are the distances of the two electrons from the nucleus, ag is the Bohr radius, «
is the fine structure constant, and Z’ is an adjustable parameter. The Hamiltonian describing
the system is given by :

2 2 A A
H:&—i—&—hc—a—hc—a—i-hcg,
2m  2m 1 T9 T19

where 719 1= |r; — 13|

III. WKB approximation

We have seen that in the WKB approximation to first order in A, the time-independent part
of the wavefunction becomes :
b(a) = ek Sdap@) 2 o~ [ dap(a)

VP VP ’

where ¢y, ¢y are constants and

p(z) = /2m(E - V() .

What is the modification to the above expression for ¢)(x) at the next order in i ?



Relevant formulas for ithe HYDROGENIC ATOM

Let ¢ = Jef be the charge of the proton. For a stple treatment of the hydrogenic atom, one assunes that
the nueleus (of charge Ze) in point-like, statie, responsible for the Coulomb potential binding the eledron
(of mass rn and charge e} with an interaction energy

1 me RN

Jilyy w5 o e o

n 2

Here, n is the principal quantum munber (ie. a positive integer), o = -

ohe
ahructurve constant and me® 20 511 KeV. The wave functions ((nu-smmdmy to ‘ﬂl{h a (l(‘poum ate energy kvel
are given by

Patm (10,0} = {F|nlm) = By (r) Yo (8,4)

whore i, L and nare the usual quantum numbers,
The fieat fow of these wave functions read as

AT . .
frion = ‘5()% o Yoo (f, )

g
oo == 2 ()’ [l - (;,_M.)] ¢ B Yoo (0, 0)
fty 2

2 VAN A
3 i : g il + "lh /. N
‘f’.!!m \/; (ZILU} (2““)( }Em((}: (f))

e e 7 9_} ’ ¢ ar 2 Z’ ol . ﬁelzl,;:.. P
havo = 2 () l_'t ) 5 ] ¢ 7 Yoollp)
‘‘‘‘‘ v Z 3 Zr 1.2+ ] . o
‘/’!H-m l\/‘g(m::n) (;ﬂ;o) [l 2(3(‘10 )‘ @ v }!m((), (,0}
ar
b == QL 1";;;‘) A Vo0, )

whaere ag = -
me
apherienl harmonics are given by

Yoo o= ‘;‘/«*l';:

Yo s \/ r) (Beos* 6 - 1) Yo = \/l:‘i sin cogf et Yiopg = \/ EZ{ sin® § o2
Wy 16 A0 hH R 87 LR : y 2:2 o .

We sl spell out the the value of the probability density at the origin,

P
4

I(f)n!m( U)|2 ' | 5!‘ 0

‘u

a wall as the expectation values of certain operators in the state [néd:

o0
<7'k) o f dr 7'2\'“*: {F{'”"(?.)lz

(}

() =5 () Bt o0l 6% = 5 (%) Wt 1 e+ 1)

<l> \\\\\ (4) .4 <'> e By L <1> ..... (/) L
r/ " \ag/ nt’ v ) tag! md(e 4 Ly v/ Nao/ n3e€+ LY{E+1)




Some useful INTEGRALS

{X)
" 28
dro " rginfiy = ol o, {1 positive
/u (a + p#)? (e, )
€ o
/ de (\mm{:gw:‘z o -}[fi
. Cx

e a) - .
- 2.2 50, noo e
/ dyp @D —\-—Cc i (#f real)

)

/ (l::{'f'
S

o : 1 g ritr ad g
/ d's’!'] / (l'jT"g Fyera il ] by i 'ﬂ‘z -y
R J s ry - 7‘2| 8

FORMULAS involving the “S-function”
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Sheet 9 : WKB, Interaction picture

I. Bohr-Sommerfeld quantization

A particle moves in a potential well V' (z) such that for energy E > V(x) there are exactly
two turning points. Show that in the WKB approximation the discrete energy levels are
determined by the condition

b
1
| pards =i+ 5. nen,

where a, b are the turning points given by V(a) = V(b) = E and b > a; the position-

dependent momentum is given by p(z) := \/2m(E — V().

II. Time evolution operator

We have seen that the time evolution operator in the interaction picture takes the form of a
Dyson series expansion :

Us(t, to) _1+ZU (t,to)

U™ (t,t,) = (m> /dt1/ dty - - / dt, Hyr(t) - Hyr(tn)

and H, is the perturbation in the interaction picture.

where

II.A Using the above expression, verify explicitly that U;(t, o) obeys the differential equa-~
tion :

L d
ZﬁEU[(t,tO) == Hp[(t)U[(t,tO) .

II.B Show that

1 1 n t t t
U™ (t,to) = ~ <ﬁi) /to dt, /to dt, - ~-/to dt,T[Hyr(t1) - -~ Hyr(t)]

where the time-ordering operator T is defined by
T[AL(t1) - - An(ta)] = Apy(tp) - - Apm) (tpm)
and P is the permutation of n indices for which

tpa)y > tpe) > - > 1tpm) -



III. Interaction picture
Consider a particle of mass m moving under the influence of a time-dependent one-dimensional
potential Vs(t, ) (in the Schrodinger picture).

ITI.A Treating Vs(t,x) as a perturbation, solve the equations of motion for the position and
momentum operators z;(t), p;(t) in the interaction picture.

III.B Compute the commutators [z;(t1), z1(t2)], [pr(ti), pr(t2)], [x1(t1), pr(t2)]-
III.c Consider two operators Og, O% (in the Schrodinger picture) such that

[0s,05] = 0.

Show that
[Or(), 07(1)] =0 .

Compare with the result of the previous exercise.
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Sheet 10 : Time-dependent perturbation

I. Two-state system

Consider the two-state system described, in the Schrédinger picture, by the Hamiltonian
H = Hy + H, where :

Ho = Er[1)(1] + E2[2)(2|

w —iw <1)
Hy, = ye™!|1)(2] + ve™™"|2)(1]

where v, w are real and positive, and Fy > FEj.

I.A For a general state [¢(t)); in the interaction picture, we expand

) =3 ca®)ln) |

n

where {|n)} is an orthonormal set of eigenstates of the unperturbed Hamiltonian Hy. Use
the explicit form of the time-evolution operator to express the coefficients ¢,(t) in a series
expansion in the perturbation H,.

I.B Assuming that at ¢ = 0 the system is in its ground state |1), and treating H, as a
perturbation, use the result of the previous exercise to determine |c(¢)|?, |c2(#)|? for the wa-
vefunction of the system (1) to the first non-vanishing order in time-dependent perturbation
theory.

I.C Determine |c;(t)[?, |ca(t)|? exactly by solving a coupled system of first-order differential
equations for ¢ (t), cz(t) ; compare with the previous result.

II. Charged harmonic oscillator

A one-dimensional charged harmonic oscillator (charge e, mass m, angular frequency w) is
in its ground state for ¢t < ty. At time ¢y a constant electric field is turned on. Determine,
to first order in time-dependent perturbation theory, the probability that at time ¢ > t, the
oscillator is in the n-th excited state.



ITII. Hydrogen atom

A hydrogen atom in its 1s ground state is placed in a uniform time-dependent electric field
given by :

= 0, t<0

E:{ Eoe™"2, t>0

where z is the unit vector in the positive z axis, and Fy, 7 are constants.

ITI.A Derive the electric potential and the corresponding perturbation H, for ¢ > 0.
III.B Compute the probability that at time ¢t >> 7 the hydrogen atom is in the state 2s.
III.C Repeat the previous exercise for each of the three 2p states.

Hint : Take into account that z = /4m/3 rYjy. The wavefunction of the state with quantum
numbers n,l,m is given by : W, (7) = Ry (r)Yim (0, ¢). You may further assume that the
radial integrals

I = / drr® Ry (r)Ryo , I := / drr® R, (r)Rio
0 0

are known and non-vanishing.
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I. Linear response

We would like to study the change of the expectation value of the operator A (in the Schrodin-
ger picture) under the influence of a perturbation :

HP = _Bb(t) )

where B is a time-independent operator, and the time-dependent function b(¢) represents the
strength of the perturbation. We shall assume that at ¢ — —oo the system is in an energy
eigenstate |n) of the unperturbed hamiltonian H, with eigenvalue E°. The time-dependent
change (0A(t)), of the expectation value of the operator A is given by :

(OA))n = (Un(t)[A[Tn(2)) = (n|Aln) |

where W, (t)) is the state of the system at time ¢.

I.A The linear response function X'} is defined by

[ee]

GA()), = / A X7 (= 1)b(t) -

—00

Show that
Xip(t) = %@@) > ((nlAJm) {m|Bln)e= " — (n|Blm){m|Aln)em")

m

where w,, := (E°, — E%)/h and © is the step function :

1, >0

@(@:{07 2 <0

I.B The Fourier transform f(w) of a function f(t) is given by
* dw —iw
10 = [ SEFwe
oo 2T

Show that the Fourier transform of a convolution :

ﬂﬂz/mﬁdﬂ—hm%%

—00



is given by the product of the Fourier transforms : C'(w) = f(w)g(w) . Use this result to show

that the Fourier transform of (0 A(t)), reads : <(§74(w)> = X" ,(w)b(w) , where the Fourier

transform of the linear response is given by :

(n|A|m)(m|B|n n|B|lm){m|A|n
0 (w hz<|| ||>_<||><||>)'

Wimpn — W — 1€ Whm — W — 1€

(1)

Hint : You may use the integral representation of the step function :

® dw e Wt
o) =—lim [ — ——.
e=0 J_ o 2m w + 1€

II. Polarizability

We would now like to apply formuma (1) to the case of atoms in a time-dependent electric
field. Consider the perturbation :
H,=¢ezE(t) ,

where e is the charge of the electron, Z is the position operator in the direction of the z-
axis, and F(t) is a time-dependent electric field ; the operator B of the previous exercise
now corresponds to the dipole operator D := ez, while b(t) corresponds to F(t). The above
perturbation leads to an induced dipole moment

(6D(w))n = XBp(w)Ew) ,

i.e. the operator A of the previous exercise also corresponds to D. The linear response
function X7 is called polarizability.

ITI.A Show that )

Kpplw)= =3 I (2

Mme “— (w + ie)

where m, is the electron mass and f,,, is the so-called oscillator strength :

2m,
wmn|<m|D|n>|2

fmn = %

II.B Consider formula (2) for the ground state n = 0. Near the resonance frequency w ~ wigo
it breaks down. In this case higher energy eigenstates |m) are excited, with life expectancy
['-1. One can take this into account by formally complexifying the corresponding energy
cigenvalue EY, — E0 — hl',,. Compute the polarizability in the case where w ~ wpy.

II.c It is known from electrodynamics that the polarizability is related to the dielectric
constant £ via :

where C'is a real constant proportional to the number of atoms per volume. Determine and
draw the real and imaginary parts of £ as a function of w.

Interpretation : The dielectric constant is related to the refractive index n and the absorption
coefficient r through £ = (n + ix)?. In the case of an incoming electric field of the form of
a plane wave F, = Eye'**=! inside the medium we obtain E, = Eye *kreinkz—wt) . j o pn

determines the dispersion and x the absorption.
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I. Scattering off a hard sphere

Consider the scattering of an incoming wave e** off a hard sphere of radius a, i.e. a spherically

symmetric potential of the form

oo, r<a
V<r):{0 r>a

I.A Take into account the symmetries of the system to justify the following ansatz for the
wavefunction : .
Y(r) = Ri(r)Pi(cosb) .
1=0
Determine the differential equation obeyed by the radial part R;(r). Solve for R;(r) by taking
into account the boundary condition at » = a and the asymptotic form of the wavefunction :

ikr
Ulr) — & 4 f(k0)— .

7—00

I.B Determine sin? §;, where §; is defined through :

2(21 + 1)e™ sin 6, Py(cos ) .

=0

1
k,0)=—
f( ) ) k
Compute the total cross section oy.;.

I.C Argue that for ka << 1 the [ = 0 term in the partial wave sum dominates the total
cross section ; this is the case of the so-called s-wave scattering. Compute oy, in this limit
and compare with the classical cross section.

I.D Consider now the opposite limit ka >> 1. In this case one may ignore the terms [ > [y,
where [y ~ ka. Compute o, in this limit and compare with the classical cross section.

II. Scattering off a spherical well

Consider now an attractive spherically symmetric potential well

_%7 T'SG
0, r>a ’

V(r) = {



where Vy > 0.

II.A We shall consider the case of s-wave scattering, ka << 1, so that the partial waves
with [ > 1 may be ignored. Making the same ansatz for the wavefunction as in the previous
exercise, determine the wavefunction by taking into account the boundary condition at r = 0
and the r — oo asymptotics, and imposing continuity for the wavefunction and its first
derivative at r = a. Determine tan dy.

II.B Assume in addition that
—tan(qa) << 1,
q

where ¢% := 2m(E + V) /h?. Use the previous result for tan dy to compute o in this limit.
Under what condition do we have o;,; = 07

The vanishing of the total cross section for certain values of the energy of the incoming wave
(observed in particular in the scattering of low-energy electrons by atoms of a noble gas)
goes under the name Ramsauer-Townsend effect and has no classical analogue.

III. Born approximation

Determine the differential cross section do/dS2 in the Born approximation for the Yukawa
potential V(r) = Ve " /r. In which limit is the Rutherford formula (for scattering off a
Coulomb potential) recovered ? Compute the total cross section ..

Useful formulae : The spherical Bessel and Neumann functions j;(p), n(p) are linearly
independent solutions of the differential equation

2 I(1+1)
!(p) + ;f{(p) +hlp) = =5 filp) =0,
where a prime denotes differentiation with respect to p. Their asymptotics are given by :
() = pl/RU+D ) p—0
JI\pP) = sin(p;lﬂ*/Q) . p— 0

__cos(p—lm/2) )

) =@+ 1), p=0
n(p) = 0= 00

P) )

where (2l + 1)!!'=1-3--- (214 1). For [ = 0 we have :

, sin p cos p
Jo(p) = , no(p) = - :
p p
The spherical Hankel functions of the first and second kind are the linear combinations
. . 2 . .
W (p) = dilp) +inalp) o B (p) = i) — inulp)
with asymptotics :
P efip
RV () (e 7 () — 18
D) (0TS )
We also have : .

eks = Z(Ql + 1)i' Py(cos 0) i (kr) .
=0



