# Prohability and Statistics 

## Basic concepts

## Florian RUPPIN

Université Grenoble Alpes / LPSC ruppin@lpsc.in2p3.fr

Course content: Benoit Clément

Kendall's Advanced theory of statistics, Hodder Arnold Pub.
volume 1: Distribution theory, A. Stuart et K. Ord
volume 2a: Classical Inference and and the Linear Model, A. Stuart, K. Ord, S. Arnold
volume 2b: Bayesian inference, A. O'Hagan, J. Forster

The Review of Particle Physics, K. Nakamura et al., J. Phys. G 37, 075021 (2010) (+Booklet)
Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling, Oxford Science Publication
Statistical Data Analysis, Glen Cowan, Oxford Science Publication

Analyse statistique des données expérimentales, K. Protassov, EDP sciences
Probabilités, analyse des données et statistiques, G. Saporta, Technip
Analyse de données en sciences expérimentales, B. Clément, Dunod

## First lecture: Probability theory - Sample and population

## SAMPLE

- Finite size
- Selected through a random process
eg. Result of a measurement


## POPULATION

- Potentially infinite size
eg. All possible results

Characterization of the sample, the population and the sampling process

## Second lecture: Statistical inference

## Experiment

Using the sample to estimate the characteristics of the population

- Random process ("measurement" or "experiment"):

Process whose outcome cannot be predicted with certainty.

- Described by:

Universe: $\Omega=$ Set of all possible outcomes
Event: Logical condition on an outcome
Either true or false
An event splits the universe in 2 subsets


- An event $\mathscr{A}$ will be identified by the subset $\mathbb{A}$ for which $\mathscr{A}$ is true.
- Probability function P defined by: (Kolmogorov, 1933)

$$
\begin{aligned}
\mathrm{P}:\{\text { Events }\} & \longrightarrow[0: 1] \\
\mathrm{A} & \longrightarrow \mathrm{P}(\mathrm{~A})
\end{aligned}
$$

- Properties:

$$
\begin{aligned}
& \mathrm{P}(\Omega)=1 \\
& \mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \text { if }(\mathrm{A} \text { and } \mathrm{B})=\emptyset
\end{aligned}
$$

- Interpretation:
- Frequentist approach: if we repeat the random process a great number of times $n$, and count the number of times the outcome satisfies event $\mathrm{A}, n_{\mathrm{A}}$ then the ratio:

$$
\lim _{n \rightarrow+\infty} \frac{n_{\mathrm{A}}}{n}=\mathrm{P}(\mathrm{~A}) \text { defines a probability }
$$

- Bayesian interpretation: A probability is a measure of the credibility associated to the event.

- Event "not A" associated with the complement of A :

$$
\begin{aligned}
& \mathrm{P}(\overline{\mathrm{~A}})=1-\mathrm{P}(\mathrm{~A}) \\
& \mathrm{P}(\emptyset)=1-\mathrm{P}(\Omega)=0
\end{aligned}
$$

- Event "A and B" associated with the intersection of the subsets
- Event "A or B" associated with the union of the subsets
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
- Event B known to be true $\longrightarrow$ restriction of the universe to $\Omega^{\prime}=\mathrm{B}$ Definition of a new probability function on this universe, the conditional probability: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ "probability of A given B "

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{~B})}
$$



- The definition of the conditional probability leads to:
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \cdot \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \cdot \mathrm{P}(\mathrm{A})$
$\rightarrow$ Relation between $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, the Bayes theorem:

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \cdot \mathrm{P}(\mathrm{~B})}{\mathrm{P}(\mathrm{~A})}
$$

Major role in Bayesian inference

- Two incompatible events cannot be true simultaneously: $\mathrm{P}(\mathrm{A}$ and B$)=0$
$\longrightarrow \mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
- Two events are independent, if the realization of one is not linked in any way to the realization of the other: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$

$$
\longrightarrow \mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})
$$

- When the outcome of the random process is a number (real or integer), we associate to the random process a random variable $X$.
- Each realization of the process leads to a particular result: $X=x$
$x$ is a realization of $X$
- For a discrete variable:

Probability law: $\mathrm{p}(x)=\mathrm{P}(X=x)$

- For a real variable: $\mathrm{P}(X=x)=0$

Cumulative density function: $\mathrm{F}(x)=\mathrm{P}(X<x)$

$$
\begin{aligned}
d \mathrm{~F}=\mathrm{F}(x+d x)-\mathrm{F}(x) & =\mathrm{P}(X<x+d x)-\mathrm{P}(X<x) \\
& =\mathrm{P}(X<x \text { or } x<X<x+d x)-\mathrm{P}(X<x) \\
& =\mathrm{P}(X<x)+\mathrm{P}(x<X<x+d x)-\mathrm{P}(X<x) \\
& =\mathrm{P}(x<X<x+d x)=f(x) d x
\end{aligned}
$$

Probability density function (pdf): $f(x)=\frac{d \mathrm{~F}}{d x}$

## Probability density function:


$\int_{-\infty}^{+\infty} f(x) d x=\mathrm{P}(\Omega)=1$
Note - Discrete variables can also be described by a probability density function using Dirac distributions:
$f(x)=\sum_{i} \mathrm{p}(i) \delta(i-x)$
with $\sum_{i} \mathrm{p}(i)=1$

Cumulative density function:


By construction:

$$
\begin{gathered}
\mathrm{F}(-\infty)=\mathrm{P}(\emptyset)=0 \\
\mathrm{~F}(+\infty)=\mathrm{P}(\Omega)=1 \\
\mathrm{~F}(a)=\int_{-\infty}^{a} f(x) d x \\
\mathrm{P}(a<X<b)=\mathrm{F}(b)-\mathrm{F}(a)=\int_{a}^{b} f(x) d x
\end{gathered}
$$

- For any function $g(x)$, the expectation of $g$ is:
$\mathrm{E}[g(X)]=\int g(x) f(x) d x \longrightarrow$ Mean value of $g$
- Moments $\mu_{k}$ are the expectation of $X^{k}$
$0^{\text {th }}$ moment: $\mu_{0}=1$ (pdf normalization)
1st moment: $\mu_{1}=\mu$ (mean)
$X^{\prime}=X-\mu_{1}$ is called a central variable $2^{\text {nd }}$ central moment: $\mu_{2}^{\prime}=\sigma^{2}$ (variance)
- Characteristic function: $\phi(t)=\mathrm{E}\left[e^{i x t}\right]=\int f(x) e^{i x t} d x=\mathrm{FT}^{-1}[f]$ Taylor expansion $\quad \phi(t)=\int \sum_{k} \frac{(i t x)^{k}}{k!} f(x) d x=\sum_{k} \frac{(i t)^{k}}{k!} \mu_{k}$

$$
\mu_{k}=-\left.i^{k} \frac{d^{k} \phi}{d t^{k}}\right|_{t=0}
$$

Pdf entirely defined by its moments
Characteristic function: usefull tool for demonstrations

- A sample is obtained from a random drawing within a population, described by a probability density function.
- We're going to discuss how to characterize, independently from one another:
- a population
- a sample
- To this end, it is useful to consider a sample as a finite set from which one can randomly draw elements, with equipropability.

We can then associate to this process a probability density: the empirical density or sample density

$$
f_{\text {sample }}(x)=\frac{1}{n} \sum_{i} \delta(x-i)
$$

This density will be useful to translate properties of distribution to a finite sample.

How to reduce a distribution / sample to a finite number of values?

- Measure of location:

Reducing the distribution to one central value
$\rightarrow$ Result

- Measure of dispersion:

Spread of the distribution around the central value
Uncertainty / Error

- Frequency table / histogram (for a finite sample)



Mean value: Sum (integral) of all possible values weighted by the probability of occurrence

$$
\mu=\bar{x}=\int_{-\infty}^{+\infty} x f(x) d x \quad \mu=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$




Standard deviation $(\sigma)$ and variance $\left(v=\sigma^{2}\right)$ : Mean value of the squared deviation to the mean

$$
v=\sigma^{2}=\int_{i=1}(x-\mu)^{2} f(x) d x \quad v=\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Koenig's theorem:
$\sigma^{2}=\int x^{2} f(x) d x+\mu^{2} \int f(x) d x-2 \mu \int x f(x) d x=\overline{x^{2}}-\mu^{2}=\overline{x^{2}}-\bar{x}^{2}$

- Binomial distribution: randomly choosing $K$ objects within a finite set of $n$, with a fixed drawing probability of $p$

| Variable | $: K$ |
| :--- | :--- |
| Parameters | $: n, p$ |
| Law | $: P(k ; n, p)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}$ |
| Mean | $: n p$ |
| Variance | $: n p(1-p)$ |

- Poisson distribution: limit of the binomial when $n \longrightarrow+\infty, p \longrightarrow 0, n p=\lambda$ Counting events with fixed probability per time/space unit.

| Variable | $: K$ |
| :--- | :--- | :--- |
| Parameters | $: \lambda$ |
| Law | $: P(k ; \lambda)=\frac{e^{-\lambda} \lambda^{k}}{k!}$ |
| Mean | $: \lambda$ |
| Variance | $: \lambda$ |



- Uniform distribution: equiprobability over a finite range $[a, b]$

| Parameters | $: a, b$ |
| :--- | :--- |
| Law | $: f(x ; a, b)=\frac{1}{b-a}$ if $a<x<b$ |

Mean
$: \mu=(a+b) / 2$
Variance
$: v=\sigma^{2}=(b-a)^{2} / 12$


- Normal distribution: limit of many processes
Parameters
Law

$$
\begin{aligned}
& : \mu, \sigma \\
& : f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

- Chi-square distribution: sum of the square of $n$
 normal reduced variables

| Variable | $: C=\sum_{k=1}^{n}\left(\frac{X_{k}-\mu_{X_{k}}}{\sigma_{X_{k}}}\right)^{2}$ |
| :--- | :--- |
| Parameters | $: n$ |
| Law | $: f(C ; n)=C^{\frac{n}{2}-1} e^{-\frac{C}{2}} / 2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)$ |
| Mean | $: n \quad$ Variance: $2 n$ |




Florian Ruppin - ESIPAP - 02/02/2018

- Random variables can be generalized to random vectors:

$$
\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

- The probability density function becomes:

$$
\begin{aligned}
\begin{aligned}
f(\vec{x}) d \vec{x}= & f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1} d x_{2} \ldots d x_{n} \\
= & P\left(x_{1}<X_{1}<x_{1}+d x_{1} \text { and } x_{2}<X_{2}<x_{2}+d x_{2} \ldots\right. \\
& \left.\quad \ldots \text { and } x_{n}<X_{n}<x_{n}+d x_{n}\right)
\end{aligned} \\
\text { and } P(a<X<b \text { and } c<Y<d)=\int_{a}^{b} d x \int_{c}^{d} d y f(x, y)
\end{aligned}
$$

- Marginal density: probability of only one of the component

$$
\begin{gathered}
f_{X}(x) d x=P(x<X<x+d x \text { and }-\infty<Y<+\infty)=\int(f(x, y) d x) d y \\
\longrightarrow f_{X}(x)=\int f(x, y) d y
\end{gathered}
$$

- For a fixed value of $Y=y_{0}$ :
$f\left(x \mid y_{0}\right) d x=$ "Probability of $x<X<x+d x$ knowing that $Y=y_{0}$ " is a conditional density for $X$. It is proportional to $f(x, y)$
Therefore: $f(x \mid y) \propto f(x, y) \quad \int f(x \mid y) d x=1$
$\cdots f(x \mid y)=\frac{f(x, y)}{\int f(x, y) d x}=\frac{f(x, y)}{f_{Y}(y)}$
- The two random variables $X$ and $Y$ are independent if all events of the form $x<X<x+d x$ are independent from $y<Y<y+d y$

$$
f(x \mid y)=f_{X}(x) \text { and } f(y \mid x)=f_{Y}(y) \text { hence } f(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

- For probability density functions, Bayes' theorem becomes:

$$
f(y \mid x)=\frac{f(x \mid y) f_{Y}(y)}{f_{X}(x)}=\frac{f(x \mid y) f_{Y}(y)}{\int f(x \mid y) f_{Y}(y) d y}
$$

- A random vector $(X, Y)$ can be treated as 2 separate variables marginal densities mean and standard deviation for each variable: $\mu_{X}, \mu_{Y}, \sigma_{X,}, \sigma_{Y}$
- These quantities do not take into account correlations between the variables:



- Generalized measure of dispersion: Covariance of $X$ and $Y$

$$
\operatorname{Cov}(X, Y)=\iint\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y=\rho \sigma_{X} \sigma_{Y}=\mu_{X Y}-\mu_{X} \mu_{Y}
$$

$$
\operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right)
$$

- Correlation: $\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$ Uncorrelated variables: $\rho=0$

Independent


Uncorrelated


- Covariance matrix for $n$ variables $X_{i}$ :

$$
\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right) \cdots \Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} & \ldots & \rho_{1 n} \sigma_{1} \sigma_{n} \\
\rho_{12} \sigma_{1} \sigma_{2} & \sigma_{2}^{2} & \cdots & \rho_{2 n} \sigma_{2} \sigma_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{1 n} \sigma_{1} \sigma_{n} & \rho_{2 n} \sigma_{2} \sigma_{n} & \cdots & \sigma_{n}^{2}
\end{array}\right]
$$

- For uncorrelated variables $\Sigma$ is diagonal
- Matrix real and symmetric: $\sum$ can be diagonalized

Definition of $n$ new uncorrelated variables $\mathrm{Y}_{i}$
$\Sigma^{\prime}=\left[\begin{array}{cccc}\sigma_{1}^{\prime 2} & 0 & \ldots & 0 \\ 0 & \sigma_{2}^{\prime 2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma_{n}^{\prime 2}\end{array}\right]=\mathrm{B}^{-1} \Sigma \mathrm{~B}$ with $\mathrm{Y}=\mathrm{BX}$ $\sigma_{i}^{\prime 2}$ are the eigenvalues of $\Sigma$
B contains the orthonormal eigenvectors

- The $\mathrm{Y}_{i}$ are the principal components. Sorted from the largest to the smallest $\sigma^{\prime}$, they allow dimensional reduction
- Measure of location:
- A point: $\left(\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}\right)$
- A curve: line which is the closest to the points $\longrightarrow$ linear regression
- Minimizing the dispersion between the curve " $y=a x+b$ " and the distribution

$$
\begin{aligned}
& \text { Let: } w(a, b)=\iint(y-a x-b)^{2} f(x, y) d x d y\left(=\frac{1}{n} \sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}\right) \\
& \begin{cases}\frac{\partial w}{\partial a}=0=\iint x(y-a x-b) f(x, y) d x d y \\
\frac{\partial w}{\partial b}=0=\iint(y-a x-b) f(x, y) d x d y & \\
\begin{cases}a\left(\sigma_{\mathrm{X}}^{2}+\mu_{\mathrm{X}}^{2}\right)+b \mu_{\mathrm{X}}=\rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}}+\mu_{\mathrm{X}} \mu_{\mathrm{Y}} & \text { Fully correlated } \rho=1 \\
a \mu_{\mathrm{X}}+b=\mu_{\mathrm{Y}} & \text { Fully anti-correlated } \rho=-1\end{cases} \\
\begin{cases}a=\rho \frac{\sigma_{\mathrm{Y}}}{\sigma_{\mathrm{X}}} & \text { Then Y }=a \mathrm{X}+b\end{cases} \end{cases}
\end{aligned}
$$

- Multinomial distribution: randomly choosing $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots \mathrm{~K}_{\mathrm{S}}$ objects within a finite set of $n$, with a fixed drawing probability for each category $p_{1}, p_{2}, \ldots p_{\mathrm{S}}$ with $\sum \mathrm{K}_{i}=n$ and $\sum p_{i}=1$

Parameters : $n, p_{1}, p_{2}, \ldots p_{\mathrm{S}}$
Law

$$
: P(\vec{k} ; n, \vec{p})=\frac{n!}{k_{1}!k_{2}!\ldots k_{\mathrm{S}}!} p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{\mathrm{S}}^{k_{\mathrm{S}}}
$$

Mean : $\mu_{i}=n p_{i}$
Variance

$$
: \sigma_{i}^{2}=n p_{i}\left(1-p_{i}\right)
$$

$$
\operatorname{Cov}\left(\mathrm{K}_{i}, \mathrm{~K}_{j}\right)=-n p_{i} p_{j}
$$

Note: Variables are not independent. The binomial corresponds to $S=2$ but has only one independent variable

## - Multinormal distribution:

Parameters : $\vec{\mu}, \Sigma$
Law

$$
: f(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{\sqrt{2 \pi|\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{\mathrm{T}} \Sigma^{-1}(\vec{x}-\vec{\mu})}
$$

$$
\text { If uncorrelated: } f(\vec{x} ; \vec{\mu}, \Sigma)=\prod \frac{1}{\sigma_{i} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}}
$$

Independent

## Uncorrelated



Florian Ruppin - ESIPAP - 02/02/2018

- The sum of several random variable is a new random variable $S$

$$
\mathrm{S}=\sum_{i=1}^{n} \mathrm{X}_{i}
$$

- Assuming the mean and variance of each variable exist:
- Mean value of S :

$$
\mu_{\mathrm{S}}=\int\left(\sum_{i=1}^{n} x_{i}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}=\sum_{i=1}^{n} \int x_{i} f_{\mathrm{X}_{i}}\left(x_{i}\right) d x_{i}=\sum_{i=1}^{n} \mu_{i}
$$

The mean is an additive quantity

- Variance of $S$ :

$$
\begin{aligned}
\sigma_{\mathrm{S}}^{2} & =\int\left(\sum_{i=1}^{n} x_{i}-\mu_{\mathrm{X}_{i}}\right)^{2} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\sum_{i=1}^{n} \sigma_{\mathrm{X}_{i}}^{2}+2 \sum_{i} \sum_{j<i} \operatorname{Cov}\left(\mathrm{X}_{i}, \mathrm{X}_{j}\right)
\end{aligned}
$$

For uncorrelated variables, the variance is an additive quantity used for error combinations


Florian Ruppin - ESIPAP - 02/02/2018

- Probability density function of $\mathrm{S}: f_{\mathrm{S}}(s)$
- Using the characteristic function:

$$
\phi_{\mathrm{S}}(t)=\int f_{\mathrm{S}}(s) e^{i s t} d s=\int f_{\overrightarrow{\mathrm{X}}}(\vec{x}) e^{i t \sum x_{i}} d \vec{x}
$$

For independent variables:

$$
\phi_{\mathrm{S}}(t)=\prod \int f_{\mathrm{X}_{k}}\left(x_{k}\right) e^{i t x_{k}} d x_{k}=\prod \phi_{\mathrm{X}_{i}}(t)
$$

$\rightarrow$
The characteristic function factorizes.

- The PDF is the Fourier transform of the characteristic function, therefore:

$$
f_{\mathrm{S}}=f_{\mathrm{X}_{1}} * f_{\mathrm{X}_{2}} * \ldots * f_{\mathrm{X}_{n}}
$$

The PDF of the sum of random variables is the convolution of the individual PDFs
Sum of Normal variables Normal
Sum of Poisson variables $\left(\lambda_{1}\right.$ and $\left.\lambda_{2}\right) \Longrightarrow$ Poisson with $\lambda=\lambda_{1}+\lambda_{2}$
Sum of Chi-2 variables ( $n_{1}$ and $n_{2}$ ) Khi-2 with $n=n_{1}+n_{2}$

- Weak law of large numbers

Sample of size $n=$ realization of $n$ independent variables with the same distribution (mean $\mu$, variance $\sigma^{2}$ )
The sample mean is a realization of $M=\frac{S}{n}=\frac{1}{n} \sum X_{i}$

- Mean value of $M: \mu_{M}=\mu$
- Variance of $M: \sigma_{M}^{2}=\sigma^{2} / n$


## - Central limit theorem

$n$ independent random variables of mean $\mu_{i}$ and variance $\sigma_{i}^{2}$
Sum of the reduced variables: $C=\frac{1}{\sqrt{n}} \sum \frac{X_{i}-\mu_{i}}{\sigma_{i}}$
The PDF of $C$ converges to a reduced normal distribution:

$$
f_{C}(c) \underset{n \rightarrow+\infty}{ } \frac{1}{\sqrt{2 \pi}} e^{-\frac{c^{2}}{2}}
$$

The sum of many random fluctuations is normally distributed


Florian Ruppin - ESIPAP - 02/02/2018

- Any measure (or combination of measures) is a realization of a random variable.
- Measured value: $\theta$
- True value: $\theta_{0}$
- The uncertainty quantifies the difference between $\theta$ and $\theta_{0}$ :
- Measure of dispersion

Postulate: $\Delta \theta=\alpha \sigma_{\theta} \longrightarrow$ Absolute error always positive

- Usually one differentiates:
- Statistical errors: due to the measurement PDF
- Systematic errors or bias: fixed but unknown deviation (equipment, assumptions, ...) Systematic errors can be seen as statistical error in a set of similar experiments

Observation error: $\Delta_{O}$


Scaling error: $\Delta_{S}$
Position error: $\Delta_{P}$


Measured value: $\theta=\theta_{0}+\delta_{O}+\delta_{S}+\delta_{P}$

- Each $\delta_{i}$ is a realization of a random variable of mean 0 and variance $\sigma_{i}^{2}$

For uncorrelated error sources:
$\left.\begin{array}{l}\Delta_{O}=\alpha \sigma_{O} \\ \Delta_{S} \\ \Delta_{P}=\alpha \sigma_{S} \\ \Delta_{P}\end{array}\right\} \sigma_{P}, ~ \Delta_{\mathrm{tot}}^{2}=\left(\alpha \sigma_{\mathrm{tot}}\right)^{2}=\alpha^{2}\left(\sigma_{O}^{2}+\sigma_{S}^{2}+\sigma_{P}^{2}\right)=\Delta_{O}^{2}+\Delta_{S}^{2}+\Delta_{P}^{2}$

- Choice for $\alpha$ :

Many sources of error $\longrightarrow$ central limit theorem $\longrightarrow$ normal distribution
$\alpha=1$ gives (approximately) a 68\% confidence interval
$\alpha=2$ gives a $95 \%$ confidence interval

- Measure: $x \pm \Delta x$
- Compute: $f(x) \longrightarrow \Delta f$ ?

Assuming small errors and using the Taylor expansion:


$$
\begin{gathered}
f(x+\Delta x)=f(x)+\frac{d f}{d x} \Delta x+\frac{1}{2} \frac{d^{2} f}{d x^{2}} \Delta x^{2} \\
f(x-\Delta x)=f(x)-\frac{d f}{d x} \Delta x+\frac{1}{2} \frac{d^{2} f}{d x^{2}} \Delta x^{2} \\
\Delta f=\frac{1}{2}|f(x+\Delta x)-f(x-\Delta x)|=\frac{d f}{d x} \Delta x
\end{gathered}
$$

Florian Ruppin - ESIPAP - 02/02/2018

- Measure: $x \pm \Delta x, y \pm \Delta y$
- Compute: $f(x, y, \ldots) \longrightarrow \Delta f$ ?

Method: Treat the effect of each variable as separate error sources

$$
\Delta_{x} f=\left|\frac{\partial f}{\partial x}\right| \Delta x \quad \text { and } \quad \Delta_{y} f=\left|\frac{\partial f}{\partial y}\right| \Delta y
$$

Then:

$\Delta f^{2}=\Delta_{x} f^{2}+\Delta_{y} f^{2}+2 \rho_{x y} \Delta_{x} f \Delta_{y} f=\left(\frac{\partial f}{\partial x} \Delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \Delta y\right)^{2}+2 \rho_{x y}\left|\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right| \Delta x \Delta y$

$$
\Delta f^{2}=\sum_{i}\left(\frac{\partial f}{\partial x_{i}} \Delta x_{i}\right)^{2}+2 \sum_{i, j<i} \rho_{x_{i} x_{j}}\left|\frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\right| \Delta x_{i} \Delta x_{j}
$$

## Uncorrelated

Correlated
Anticorrelated
$\Delta f^{2}=\sum_{i}\left(\frac{\partial f}{\partial x_{i}} \Delta x_{i}\right)^{2} \quad \Delta f=\left|\frac{\partial f}{\partial x}\right| \Delta x+\left|\frac{\partial f}{\partial y}\right| \Delta y \quad \Delta f=\left|\left|\frac{\partial f}{\partial x}\right| \Delta x-\left|\frac{\partial f}{\partial y}\right| \Delta y\right|$
Florian Ruppin - ESIPAP - 02/02/2018

- Estimating a parameter $\theta$ from a finite sample $\left\{x_{i}\right\}$
- Statistic: a function $S=f\left(\left\{x_{i}\right\}\right)$

Any statistic can be considered as an estimator of $\theta$ To be a good estimator it needs to satisfy:

- Consistency: limit of the estimator for an infinite sample
- Bias: difference between the estimator and the true value
- Efficiency: speed of convergence
- Robustness: sensitivity to statistical fluctuations
- A good estimator should at least be consistent and asymptotically unbiased
- Efficient / Unbiased / Robust often contradict each others

Need to make a choice for a given situation

- As the sample is a set of realizations of random variables (or one vector variable), so is the estimator:

$$
\hat{\theta} \text { is a realization of } \hat{\Theta}
$$

It has a mean, a variance, ..., and a probability density function

- Bias: characterize the mean value of the estimator $\longrightarrow b(\hat{\theta})=E\left[\hat{\Theta}-\theta_{0}\right]=\mu_{\hat{\Theta}}-\theta_{0}$ Unbiased estimator: $b(\hat{\theta})=0$
Asymptotically unbiased: $b(\hat{\theta}) \xrightarrow[n \rightarrow+\infty]{ } 0$
- Consistency: formally $\mathrm{P}(|\hat{\theta}-\theta|<\epsilon) \xrightarrow[n \rightarrow+\infty]{ } 1, \forall \epsilon$ In practice, if the estimator is asymptotically unbiased $\sigma_{\hat{\Theta}} \xrightarrow[n \rightarrow+\infty]{ } 0$


Asymptotically unbiased


- For any unbiased estimator of $\theta$, the variance cannot exceed (Cramer-Rao bound):

$$
\sigma_{\hat{\Theta}}^{2} \geq \frac{1}{E\left[\left(\frac{\partial \ln \mathcal{L}}{\partial \theta}\right)^{2}\right]}\left(=\frac{-1}{E\left[\frac{\partial^{2} \ln \mathcal{L}}{\partial \theta^{2}}\right]}\right)
$$

- The efficiency of a convergent estimator is given by its variance.

An efficient estimator reaches the Cramer-Rao bound (at least asymptotically)
$\longrightarrow$ Minimal variance estimator

- The minimal variance estimator will often be biased, asymptotically unbiased
- Sample mean is a good estimator of the population mean
$\longrightarrow$ weak law of large numbers: convergent, unbiased

$$
\hat{\mu}=\frac{1}{n} \sum x_{i} \quad \mu_{\hat{\mu}}=\mathrm{E}[\hat{\mu}]=\mu \quad \sigma_{\hat{\mu}}^{2}=\mathrm{E}\left[(\hat{\mu}-\mu)^{2}\right]=\frac{\sigma^{2}}{n}
$$

- Sample variance as an estimator of the population variance:
$\hat{s}^{2}=\frac{1}{n} \sum_{i}\left(x_{i}-\hat{\mu}\right)^{2}=\left(\frac{1}{n} \sum_{i}\left(x_{i}-\mu\right)^{2}\right)-(\hat{\mu}-\mu)^{2}$
$E\left[\hat{s}^{2}\right]=\left(\frac{1}{n} \sum_{i} \sigma^{2}\right)-\sigma_{\hat{\mu}}^{2}=\sigma^{2}-\frac{\sigma^{2}}{n}=\frac{n-1}{n} \sigma^{2}$ biased, asymptotically unbiased
$\Rightarrow$ unbiased variance estimator: $\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\hat{\mu}\right)^{2}$
Variance of the estimator (convergence): $\sigma_{\hat{\sigma}^{2}}^{2}=\frac{\sigma^{4}}{n-1}\left(\frac{n-1}{n} \gamma_{2}+2\right) \longrightarrow \frac{2 \sigma^{4}}{n}$


## Uncertainty <br> Estimator standard deviation

- Use an estimator of standard deviation: $\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}$ (biased !)
- Mean: $\quad \hat{\mu}=\frac{1}{n} \sum x_{i}$,

$$
\sigma_{\hat{\mu}}^{2}=\frac{\sigma^{2}}{n} \rightarrow \Delta \hat{\mu}=\sqrt{\frac{\hat{\sigma}^{2}}{n}}
$$

- Variance: $\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}\left(x_{i}-\hat{\mu}\right)^{2}, \quad \sigma_{\hat{\sigma}^{2}}^{2} \approx \frac{2 \sigma^{4}}{n}$

$$
\Delta \hat{\sigma}^{2}=\sqrt{\frac{2}{n}} \hat{\sigma}^{2}
$$

- Central-Limit theorem $\longrightarrow$ empirical estimators of mean and variance are normally distributed for large enough samples
$\hat{\mu} \pm \Delta \hat{\mu}, \quad \hat{\sigma} \pm \Delta \hat{\sigma} \quad$ define $68 \%$ confidence intervals

Generic function $k(x, \theta)$
$x$ : random variable(s)
$\theta$ : parameter(s)
fix $\theta=\theta_{0}$ (true value)

Probability density function

$$
\begin{gathered}
f(x ; \theta)=k\left(x, \theta_{0}\right) \\
\int f(x ; \theta) d x=1
\end{gathered}
$$

for Bayesian $f(x \mid \theta)=f(x ; \theta)$

## Likelihood function

$$
\begin{gathered}
\mathcal{L}(\theta)=k(u, \theta) \\
\int \mathcal{L}(\theta) d \theta=? ? ?
\end{gathered}
$$

for Bayesian $f(\theta \mid x)=\mathcal{L}(\theta) / \int \mathcal{L}(\theta) d \theta$
For a sample: $n$ independent realizations of the same variable $X$

$$
\mathcal{L}(\theta)=\prod k\left(x_{i}, \theta\right)=\prod f\left(x_{i} ; \theta\right)
$$

- Let a sample of measurements: $\left\{x_{i}\right\}$

The analytical form of the density is known and depends on several unknown parameters $\theta$

For example: Event counting follows a Poisson distribution with a parameter $\lambda_{i}(\theta)$ depending on the physics.

$$
\mathcal{L}(\theta)=\prod_{i} \frac{e^{\lambda_{i}(\theta)} \lambda_{i}(\theta)^{x_{i}}}{x_{i}!}
$$

- An estimator of the parameters $\theta$ is given by the position of the maximum of the likelihood function
Parameter values which maximize the probability to get the observed results

$$
\left.\frac{\partial \mathcal{L}}{\partial \theta}\right|_{\theta=\hat{\theta}}=0
$$

Note: system of equations for several parameters
Note: minimizing $-\ln \mathcal{L}$ often simplify the expression

- Mostly asymptotic properties: valid for large samples, often assumed in any case for lack of better information

Asymptotically unbiased
Asymptotically efficient (reaches the Cramer-Rao bound)
Asymptotically normally distributed
Multinormal law with covariance given by a generalization of the CR bound:

$$
f(\hat{\vec{\theta}} ; \vec{\theta}, \Sigma)=\frac{1}{\sqrt{2 \pi|\Sigma|}} e^{-\frac{1}{2}(\hat{\vec{\theta}}-\vec{\theta})^{\mathrm{T}} \Sigma^{-1}(\hat{\vec{\theta}}-\vec{\theta})} \quad \Sigma_{i j}^{-1}=-\mathrm{E}\left[\frac{\partial \ln \mathcal{L}}{\partial \theta_{i}} \frac{\partial \ln \mathcal{L}}{\partial \theta_{j}}\right]
$$

- Goodness of fit: The value of $-2 \ln \mathcal{L}(\hat{\theta})$ is Chi-2 distributed with

$$
\begin{gathered}
\text { ndf }=\text { sample size }- \text { number of parameters } \\
\mathrm{p}-\text { value }=\int_{-2 \ln \mathcal{L}(\hat{\theta})}^{+\infty} f_{\chi^{2}}(x ; \text { ndf }) d x \quad \begin{array}{l}
\text { Probability of getting } \\
\text { a worse agreement }
\end{array}
\end{gathered}
$$

$$
f(\hat{\vec{\theta}} ; \vec{\theta}, \Sigma)=\frac{1}{\sqrt{2 \pi|\Sigma|}} e^{-\frac{1}{2}(\hat{\vec{\theta}}-\vec{\theta})^{\mathrm{T}} \Sigma^{-1}(\hat{\vec{\theta}}-\vec{\theta})} \quad \Sigma_{i j}^{-1}=-\mathrm{E}\left[\frac{\partial \ln \mathcal{L}}{\partial \theta_{i}} \frac{\partial \ln \mathcal{L}}{\partial \theta_{j}}\right]
$$

- Errors on the parameters given by the covariance matrix
- For . 0 . $\quad \hat{\sigma}_{\theta}=\sqrt{-1}$ only one realization of the estimator: empirical mean of 1 value
- More generally:

$$
\Delta \ln \mathcal{L}=\ln \mathcal{L}(\hat{\theta})-\ln \mathcal{L}(\theta)=\frac{1}{2} \sum_{i, j} \Sigma_{i j}^{-1}\left(\theta_{i}-\hat{\theta_{i}}\right)\left(\theta_{j}-\hat{\theta_{j}}\right)+O\left(\theta^{3}\right)
$$

Confidence contours are defined by the equation:
$\Delta \ln \mathcal{L}=\beta\left(n_{\theta}, \alpha\right)$ with $\alpha=\int_{0}^{2 \beta} f_{\chi^{2}}\left(x ; n_{\theta}\right) d x$
Values of $\beta$ for different number parameters $n_{\theta}$ and confidence levels $\alpha$

| $n_{\theta} \rightarrow$ <br> $\alpha \downarrow$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 68.3 | 0.5 | 1.15 | 1.76 |
| 95.4 | 2 | 3.09 | 4.01 |
| 99.7 | 4.5 | 5.92 | 7.08 |

- Set of measurements $\left(x_{i}, y_{i}\right)$ with uncertainties on $y_{i}$

Theoretical law given by: $y=f(x, \theta)$

- Naive approach: use regression

$$
w(\theta)=\sum_{i}\left(y_{i}-f\left(x_{i}, \theta\right)\right)^{2} \quad \frac{\partial w}{\partial \theta_{i}}=0
$$

- Reweight each term by its associated error:

$$
K^{2}(\theta)=\sum_{i}\left(\frac{y_{i}-f\left(x_{i}, \theta\right)}{\Delta y_{i}}\right)^{2} \quad \frac{\partial K^{2}}{\partial \theta_{i}}=0
$$



- Maximum likelihood assumes that each $y_{i}$ is normally distributed with a mean equal to $f\left(x_{i}, \theta\right)$ and a standard deviation given by $\Delta y_{i}$
- The likelihood is then $\mathcal{L}(\theta)=\prod_{i} \frac{1}{\sqrt{2 \pi} \Delta y_{i}} e^{-\frac{1}{2}\left(\frac{y_{i}-f\left(x_{i}, \theta\right)}{\Delta y_{i}}\right)^{2}}$

$$
\frac{\partial \mathcal{L}}{\partial \theta}=0 \Leftrightarrow-2 \frac{\partial \ln \mathcal{L}}{\partial \theta}=\frac{\partial K^{2}}{\partial \theta}=0
$$

Least squares or Chi-2 fit is the maximum likelihood estimator for Gaussian errors

- Generic case with correlations: $K^{2}(\vec{\theta})=\frac{1}{2}(\vec{y}-\vec{f}(x, \vec{\theta}))^{\mathrm{T}} \Sigma^{-1}(\vec{y}-\vec{f}(x, \vec{\theta}))$

$$
\begin{gathered}
\cdot \text { For } f(x)=a x \quad K^{2}(a)=\mathrm{A} a^{2}-2 \mathrm{~B} a+\mathrm{C}=-2 \ln \mathcal{L} \\
\mathrm{~A}=\sum_{i} \frac{x_{i}^{2}}{\Delta y_{i}^{2}}, \quad \mathrm{~B}=\sum_{i} \frac{x_{i} y_{i}}{\Delta y_{i}^{2}}, \quad \mathrm{C}=\sum_{i} \frac{y_{i}^{2}}{\Delta y_{i}^{2}} \\
\frac{\partial K^{2}}{\partial a}=2 \mathrm{~A} a-2 \mathrm{~B}=0 \\
\frac{\partial^{2} K^{2}}{\partial a^{2}}=2 \mathrm{~A}=\frac{2}{\sigma_{a}^{2}} \\
\hat{a}=\frac{\mathrm{B}}{\mathrm{~A}}
\end{gathered}
$$

Florian Ruppin - ESIPAP - 02/02/2018

- For $f(x)=a x+b$

$$
K^{2}(a, b)=\mathrm{A} a^{2}+\mathrm{B} b^{2}+2 \mathrm{C} a b-2 \mathrm{D} a-2 \mathrm{E} b+\mathrm{F}=-2 \ln \mathcal{L}
$$

$$
\mathrm{A}=\sum_{i} \frac{x_{i}^{2}}{\Delta y_{i}^{2}}, \mathrm{~B}=\sum_{i} \frac{1}{\Delta y_{i}^{2}}, \mathrm{C}=\sum_{i} \frac{x_{i}}{\Delta y_{i}^{2}}, \mathrm{D}=\sum_{i} \frac{x_{i} y_{i}}{\Delta y_{i}^{2}}, \mathrm{E}=\sum_{i} \frac{y_{i}}{\Delta y_{i}^{2}}, \mathrm{~F}=\sum_{i} \frac{y_{i}^{2}}{\Delta y_{i}^{2}}
$$

$$
\left.\begin{array}{l}
\frac{\partial K^{2}}{\partial a}=2 \mathrm{~A} a+2 \mathrm{C} b-2 \mathrm{D}=0 \\
\frac{\partial K^{2}}{\partial b}=2 \mathrm{C} a+2 \mathrm{~B} b-2 \mathrm{E}=0
\end{array}\right\}
$$

$$
\hat{a}=\frac{\mathrm{BD}-\mathrm{EC}}{\mathrm{AB}-\mathrm{C}^{2}}, \quad \hat{b}=\frac{\mathrm{AE}-\mathrm{BC}}{\mathrm{AB}-\mathrm{C}^{2}}
$$

$$
\frac{\partial^{2} K^{2}}{\partial a^{2}}=2 \mathrm{~A}=2 \Sigma_{11}^{-1}
$$

$$
\Sigma^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~B}
\end{array}\right] \longrightarrow \Sigma=\frac{1}{\mathrm{AB}-\mathrm{C}^{2}}\left[\begin{array}{cc}
\mathrm{B} & -\mathrm{C} \\
-\mathrm{C} & \mathrm{~A}
\end{array}\right]
$$

$$
\frac{\partial^{2} K^{2}}{\partial b^{2}}=2 \mathrm{~B}=2 \Sigma_{22}^{-1}
$$

$$
\frac{\partial^{2} K^{2}}{\partial a \partial b}=2 \mathrm{C}=2 \Sigma_{12}^{-1}
$$

$$
\Delta \hat{a}=\sigma_{a}=\sqrt{\frac{\mathrm{B}}{\mathrm{AB}-\mathrm{C}^{2}}}, \quad \Delta \hat{b}=\sigma_{b}=\sqrt{\frac{\mathrm{A}}{\mathrm{AB}-\mathrm{C}^{2}}}
$$

Florian Ruppin - ESIPAP - 02/02/2018

- Two dimensional error contours on $a$ and $b$


Florian Ruppin - ESIPAP - 02/02/2018

- Directly estimating the probability density function
- Likelihood ratio discriminant
- Separating power of variables
- Data / Monte Carlo agreement
- Frequency table: For a sample $\left\{x_{i}\right\}, i=1 \ldots n$

1. Define successive invervals (bins) $C_{k}=\left[a_{k}, a_{k+1}[\right.$
2. Count the number of events $n_{k}$ in $C_{k}$

- Histogram: Graphical representation of the frequency table $h(x)=n_{k}$ if $x \in C_{k}$

| Bin | Number of N/Z | Frequency | Bin | Number of N/Z | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $<1.30$ | 0 | 0 | $1.45-1.48$ | 26 | 0.2363 |
| $1.30-1.33$ | 2 | 0.0182 | $1.48-1.51$ | 19 | 0.1727 |
| $1.33-1.36$ | 2 | 0.0182 | $1.51-1.54$ | 12 | 0.1091 |
| $1.36-1.39$ | 9 | 0.0818 | $1.54-1.57$ | 2 | 0.0182 |
| $1.39-1.42$ | 13 | 0.1182 | $1.57-1.60$ | 3 | 0.0273 |
| $1.42-1.45$ | 22 | 0.2 | $\geq 1.60$ | 0 | 0 |



Florian Ruppin - ESIPAP - 02/02/2018

- Statistical description: $n_{k}$ are multinomial random variables

$$
\begin{aligned}
& \text { Parameters: } n=\sum_{k} n_{k} \quad p_{k}=\mathrm{P}\left(x \in C_{k}\right)=\int_{C_{k}} f_{\mathrm{X}}(x) d x \\
& \mu_{n_{k}}=n p_{k} \quad \sigma_{n_{k}}^{2}=n p_{k}\left(1-p_{k}\right) \underset{\substack{p_{k} \ll 1}}{ } \mu_{n_{k}} \quad \operatorname{Cov}\left(n_{k}, n_{r}\right)=-n p_{k} p_{p_{r}} \approx 0
\end{aligned}
$$

For a large sample:
For small classes (width $\delta$ ):
$\lim _{n \rightarrow+\infty} \frac{n_{k}}{n}=\frac{\mu_{k}}{n}=p_{k} \quad \quad p_{k}=\int_{C_{k}} f_{\mathrm{X}}(x) d x \approx \delta f\left(x_{c}\right) \Rightarrow \lim _{\delta \rightarrow 0} \frac{p_{k}}{\delta}=f(x)$
Finally: $f(x)=\lim _{\substack{n \rightarrow+\infty \\ \delta \rightarrow 0}} \frac{1}{n \delta} h(x)$

- The histogram is an estimator of the probability density function
- Each bin can be described by a Poisson density

The $1 \sigma$ error on $n_{k}$ is then: $\Delta n_{k}=\sqrt{\hat{\sigma}_{n_{k}}^{2}}=\sqrt{\hat{\mu}_{n_{k}}}=\sqrt{n_{k}}$

- For a random variable, a confidence interval with confidence level $\alpha$, is any interval $[a, b]$ such that:

$$
\mathrm{P}(\mathrm{X} \in[a, b])=\int_{a}^{b} f_{\mathrm{X}}(x) d x=\alpha
$$

Probability of finding a realization inside the interval

- Generalization of the concept of uncertainty: interval that contains the true value with a given probability
- For Bayesians: the posterior density is the probability density of the true value.
$\ldots$ It can be used to estimate an interval: $\mathrm{P}(\theta \in[a, b])=\alpha$
- No such thing for a Frequentist: the interval itself becomes the random variable $[a, b]$ is a realization of $[\mathrm{A}, \mathrm{B}]$
$\mathrm{P}(\mathrm{A}<\theta$ and $\mathrm{B}>\theta)=\alpha \quad$ independently of $\theta$

- Mean centered, probability symetric interval: $[a, b]$ $\int_{a}^{\mu} f(x) d x=\int_{\mu}^{b} f(x) d x=\frac{\alpha}{2}$
- Mean centered, symetric interval:

$$
\begin{aligned}
& {[\mu-a, \mu+a]} \\
& \int_{\mu-a}^{\mu+a} f(x) d x=\alpha
\end{aligned}
$$



- Highest probability density (HDP) interval: $[a, b]$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\alpha \\
& f(x)>f(y) \text { for } x \in[a, b] \text { and } y \notin[a, b]
\end{aligned}
$$

Florian Ruppin - ESIPAP - 02/02/2018

- To build a frequentist interval for an estimator $\hat{\theta}$ of $\theta$ :

1. Make pseudo-experiments for several values of $\theta$ and compute the estimator $\hat{\theta}$ for each (Monte Carlo sampling of the estimator PDF)
2. For each $\theta$, determine $\Xi(\theta)$ and $\Omega(\theta)$ such that:
$\hat{\theta}<\Xi(\theta)$ for a fraction $(1-\alpha) / 2$ of the pseudo-experiments
$\hat{\theta}>\Omega(\theta)$ for a fraction $(1-\alpha) / 2$ of the pseudo-experiments
These 2 curves are the confidence belt for a confidence level $\alpha$
3. Inverse these functions. The interval $\left[\Omega^{-1}(\hat{\theta}), \Xi^{-1}(\hat{\theta})\right]$ satisfies:


$$
\begin{aligned}
\mathrm{P}\left(\Omega^{-1}(\hat{\theta})<\theta<\Xi^{-1}(\hat{\theta})\right) & =1-\mathrm{P}\left(\Xi^{-1}(\hat{\theta})<\theta\right)-\mathrm{P}\left(\Omega^{-1}(\hat{\theta})>\theta\right) \\
& =1-\mathrm{P}(\hat{\theta}<\Xi(\theta))-\mathrm{P}(\hat{\theta}>\Omega(\theta))=\alpha
\end{aligned}
$$

Confidence belt for a Poisson parameter $\lambda$ estimated with the empirical mean of 3 realizations ( $68 \% \mathrm{CL}$ )

Florian Ruppin - ESIPAP - 02/02/2018

- The variance of the estimator only measures the statistical uncertainty.
- Often, we will have to deal with parameters whose value is known with limit precision.
- The likelihood function becomes:

$$
\mathcal{L}(\theta, \nu) \quad \text { with } \quad \nu=\nu_{0} \pm \Delta \nu \text { or } \nu_{0}^{+\Delta \nu_{+}}
$$

The known parameters $\nu$ are nuisance parameters

- In Bayesian statistics, nuisance parameters are dealt with by assigning them a prior $\pi(\nu)$.
- Usually a multinormal law is used with mean $\nu_{0}$ and covariance matrix estimated from $\Delta \nu_{0}$ (+ correlation if needed)

$$
f(\theta, \nu \mid x)=\frac{f(x \mid \theta, \nu) \pi(\theta) \pi(\nu)}{\iint f(x \mid \theta, \nu) \pi(\theta) \pi(\nu) d \theta d \nu}
$$

- The final posterior distribution is obtained by marginalization over the nuisance parameters:

$$
f(\theta \mid x)=\int f(\theta, \nu \mid x) d \nu=\frac{\int f(x \mid \theta, \nu) \pi(\theta) \pi(\nu) d \nu}{\iint f(x \mid \theta, \nu) \pi(\theta) \pi(\nu) d \theta d \nu}
$$

- No true frequentist way to add systematic effects. Popular method of the day: profiling
- Deal with nuisance parameters as realization of random variables:
$\longrightarrow$ extend the likelihood: $\mathcal{L}(\theta, \nu) \longrightarrow \mathcal{L}^{\prime}(\theta, \nu) \mathcal{G}(\nu)$
- $\mathcal{G}(\nu)$ is the likelihood of the new parameters (identical to prior)
- For each value of $\theta$, maximize the likelihood with respect to nuisance: profile likelihood $\mathrm{PL}(\theta)$
- $\mathrm{PL}(\theta)$ has the same statistical asymptotical properties than the regular likelihood

- Statistical tests aim at:
- Checking the compatibility of a dataset $\left\{x_{i}\right\}$ with a given distribution
- Checking the compatibility of two datasets $\left\{x_{i}\right\},\left\{y_{i}\right\}$ : are they issued from the same distribution?
- Comparing different hypothesis: background VS signal + background
- In every case:
- Build a statistic that quantifies the agreement with the hypothesis
- Convert it into a probability of compatibility/incompatibility: p-value
- Test for binned data: use the Poisson limit of the histogram
- Sort the sample into $k$ bins $C_{i}: n_{i}$
- Compute the probability of this class: $p_{i}=\int_{C_{i}} f(x) d x$
- For each bin, the test statistics compares the deviation of the observation from the expected mean to the theoretical standard deviation.

$$
\chi^{2}=\sum_{\text {bins } i} \frac{\left(n_{i}-n p_{i}\right)^{2}}{n p_{i}}
$$

- $\chi^{2}$ follows (asymptotically) a Chi-2 law with $k-1$ degrees of freedom (one constraint $\sum n_{i}=n$ )
- p-value: probability of doing worse: $\mathrm{p}-$ value $=\int_{\chi^{2}}^{+\infty} f_{\chi^{2}}(x ; k-1) d x$ For a "good" agreement: $\chi^{2} /(k-1) \sim 1$
More precisely: $\chi^{2} \in(k-1) \pm \sqrt{2(k-1)} \quad(1 \sigma$ interval $\sim 68 \% \mathrm{CL})$
- Test for unbinned data: compare the sample cumulative density function to the tested one
- Sample PDF (ordered sample)

$$
f_{\mathrm{S}}(x)=\frac{1}{n} \sum_{i} \delta(x-i) \rightarrow F_{\mathrm{S}}(x)=\left\{\begin{array}{cc}
0 & x<x_{0} \\
\frac{k}{n} & x_{k} \leq x<x_{k+1} \\
1 & x>x_{n}
\end{array}\right.
$$

- The Kolmogorov statistic is the largest deviation:

$$
D_{n}=\sup _{x}\left|F_{\mathrm{S}}(x)-F(x)\right|
$$

- The test distribution has been computed by Kolmogorov:

$$
\mathrm{P}\left(D_{n}>\beta \sqrt{n}\right)=2 \sum_{r}(-1)^{r-1} e^{-2 r^{2} z^{2}}
$$

$[0, \beta]$ defines a confidence interval for $D_{n}$

$$
\beta=0.9584 / \sqrt{n} \text { for } 68.3 \% \mathrm{CL} \quad \beta=1.3754 / \sqrt{n} \text { for } 95.4 \% \mathrm{CL}
$$

- Test compatibility with an exponential law: $f(x)=\lambda e^{-\lambda x}, \lambda=0.4$
$0.008,0.036,0.112,0.115,0.133,0.178,0.189,0.238,0.274,0.323,0.364,0.386,0.406,0.409,0.418,0.421,0.423,0.455$, $0.459,0.496,0.519,0.522,0.534,0.582,0.606,0.624,0.649,0.687,0.689,0.764,0.768,0.774,0.825,0.843,0.921,0.987$, $0.992,1.003,1.004,1.015,1.034,1.064,1.112,1.159,1.163,1.208,1.253,1.287,1.317,1.320,1.333,1.412,1.421,1.438$, $1.574,1.719,1.769,1.830,1.853,1.930,2.041,2.053,2.119,2.146,2.167,2.237,2.243,2.249,2.318,2.325,2.349,2.372$, 2.465, 2.497, 2.553, 2.562, 2.616, 2.739, 2.851, 3.029, 3.327, 3.335, 3.390, 3.447, 3.473, 3.568, 3.627, 3.718, 3.720, 3.814, 3.854, 3.929, 4.038, 4.065, 4.089, 4.177, 4.357, 4.403, 4.514, 4.771, 4.809, 4.827, 5.086, 5.191, 5.928, 5.952, 5.968, 6.222, 6.556, 6.670, 7.673, 8.071, 8.165, 8.181, 8.383, 8.557, 8.606, 9.032, 10.482, 14.174


$$
\begin{aligned}
& D_{n}=0.069 \\
& \mathrm{p}-\text { value }=0.0617 \\
& 1 \sigma:[0,0.0875]
\end{aligned}
$$

Florian Ruppin - ESIPAP - 02/02/2018

