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3 Contents

First lecture: Probability theory - Sample and population

SAMPLE

• Finite size
• Selected through a random process

eg. Result of a measurement

POPULATION
• Potentially infinite size 

eg. All possible results

Characterization of the sample, the population and the sampling process
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4 Contents

Second lecture: Statistical inference

Using the sample to estimate the characteristics of the population

SAMPLE
• Finite size

POPULATION

xi

f(x; ✓)

Inference

Experiment

Physics
parameters ✓
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5 Random process

• Random process (“measurement” or “experiment”):
Process whose outcome cannot be predicted with certainty.

• Described by:

Universe: ⌦ = Set of all possible outcomes

Event: Logical condition on an outcome  
Either true or false  
An event splits the universe in 2 subsets

⌦

A
Ā

• An event A will be identified by the subset A for which A is true.

Florian Ruppin - ESIPAP - 02/02/2018 



6 Probability

• Probability function P defined by: (Kolmogorov, 1933)

P : {Events} [0 : 1]

A P(A)

• Properties:

P(⌦) = 1

P(A or B) = P(A) + P(B) if (A and B) = ;
• Interpretation:

 - Frequentist approach: if we repeat the random process a great number of times    , 
and count the number of times the outcome satisfies event     ,        then the ratio:

n
nAA

lim
n!+1

nA

n
= P(A) defines a probability

 - Bayesian interpretation: A probability is a measure of the  
                                             credibility associated to the event.   
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7 Logical relations

⌦

A
Ā

⌦
A

B

A and B

⌦
A

B

A or B

• Event “not A” associated with the 
complement of A:

P(Ā) = 1� P(A)

P(;) = 1� P(⌦) = 0

P(A or B) = P(A) + P(B)� P(A and B)

• Event “A and B” associated with the 
intersection of the subsets

• Event “A or B” associated with the 
union of the subsets
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8 Conditional probability

• Event     known to be true            restriction of the universe to  
Definition of a new probability function on this universe, the conditional probability:

B ⌦0 = B

P(A|B) = ”probability of A given B”

P(A|B) = P(A and B)

P(B)

A|B

⌦
A

B

A and B

⌦0 = B

P(A and B) = P(A|B).P(B) = P(B|A).P(A)

• The definition of the conditional probability leads to:

P(B|A)P(A|B)Relation between              and             , the Bayes theorem:

P(B|A) = P(A|B).P(B)
P(A)

Major role in 
Bayesian inference
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9 Incompatibility and Independance

• Two incompatible events cannot be true simultaneously: P(A and B) = 0

P(A or B) = P(A) + P(B)

P(A|B) = P(A) P(B|A) = P(B)
• Two events are independent, if the realization of one is not linked in any way to 

the realization of the other: and

P(A and B) = P(A).P(B)
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10 Random variable

• When the outcome of the random process is a number (real or integer), 
we associate to the random process a random variable     .X

• Each realization of the process leads to a particular result:    
X = x

x

is a realization of X

• For a discrete variable:
p(x) = P(X = x)Probability law:

P(X = x) = 0• For a real variable:
F(x) = P(X < x)Cumulative density function:

dF = F(x+ dx)� F(x) = P(X < x+ dx)� P(X < x)

= P(X < x or x < X < x+ dx)� P(X < x)

= P(X < x) + P(x < X < x+ dx)� P(X < x)

= P(x < X < x+ dx) = f(x)dx

Probability density function (pdf):
f(x) =

dF

dx
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11 Density function

f(x)

x

F(x)

x

1

Probability density function: Cumulative density function:

Z +1

�1
f(x)dx = P(⌦) = 1

F(�1) = P(;) = 0

F(+1) = P(⌦) = 1

F(a) =

Z a

�1
f(x)dx

P(a < X < b) = F(b)� F(a) =

Z b

a
f(x)dx

Note - Discrete variables can also be described by a 
probability density function using Dirac distributions:

By construction:

f(x) =
X

i

p(i)�(i� x)

X

i

p(i) = 1with
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12 Moments

E[g(X)] =

Z
g(x)f(x)dx

µ0 = 1
µ1 = µ

�(t) = E[eixt] =

Z
f(x)eixtdx = FT�1[f ]

�(t) =

Z X

k

(itx)k

k!
f(x)dx =

X

k

(it)k

k!
µk

g(x) g• For any function          , the expectation of     is:

Mean value of g

µk Xk• Moments        are the expectation of 

0th moment: (pdf normalization)
1st moment: (mean)
X 0 = X � µ1 is called a central variable

µ0
2 = �22nd central moment: (variance)

• Characteristic function:

Taylor expansion

µk = �ik
dk�

dtk

���
t=0

Pdf entirely defined by its moments
Characteristic function: usefull tool for demonstrations

Florian Ruppin - ESIPAP - 02/02/2018 



13 Sample PDF

This density will be useful to translate properties of distribution to a finite sample. 

• A sample is obtained from a random drawing within a population, 
described by a probability density function.

• We’re going to discuss how to characterize, independently from one another: 

a population

a sample

• To this end, it is useful to consider a sample as a finite set from which one 
can randomly draw elements, with equipropability.

We can then associate to this process a probability density: 
the empirical density or sample density

fsample(x) =
1

n

X

i

�(x� i)
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14 Characterizing a distribution

How to reduce a distribution / sample to a finite number of values ?

• Measure of location: 

Reducing the distribution to one central value

• Measure of dispersion: 

Spread of the distribution around the central value

• Frequency table / histogram (for a finite sample)

Result

Uncertainty / Error
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15 Location and dispersion
Population Sample (size    )n

Mean value: Sum (integral) of all possible values weighted by the probability of occurrence

µ = x̄ =

Z +1

�1
xf(x)dx µ = x̄ =

1

n

nX

i=1

xi

Standard deviation (    ) and variance (                 ): Mean value of the 
squared deviation to the mean

v = �2�

v = �

2 =

Z
(x� µ)2f(x)dx v = �

2 =
1

n

nX

i=1

(xi � µ)2

Koenig’s theorem:

�

2 =

Z
x

2
f(x)dx+ µ

2

Z
f(x)dx� 2µ

Z
xf(x)dx = x

2 � µ

2 = x

2 � x̄

2
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16 Discrete distributions

� = 6.5

p = 0.65
n = 10

p
K n• Binomial distribution: randomly choosing     objects within a finite set of    , 

with a fixed drawing probability of

P (k;n, p) =
n!

k!(n� k)!
pk(1� p)n�k

np
np(1� p)

K
n p

Variable
Parameters
Law
Mean
Variance

:
:
:
:
:

,

n �! +1 p �! 0 np = �• Poisson distribution: limit of the binomial when                      ,                ,  
Counting events with fixed probability per time/space unit.

K
�
P (k;�) =

e���k

k!�
�

Variable
Parameters
Law
Mean
Variance

:
:
:
:
:
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17 Real distributions

a b
f(x; a, b) =

1

b� a

if a < x < b

µ = (a+ b)/2

v = �2 = (b� a)2/12

µ �
f(x;µ,�) =

1

�

p
2⇡

e

� (x�µ)2

2�2

• Uniform distribution: equiprobability over a finite range [a, b]
Parameters
Law

Mean

Variance

:
:

:

:

,

• Normal distribution: limit of many processes
Parameters
Law

:
:

• Chi-square distribution: sum of the square of    
normal reduced variables

n

C =
nX

k=1

✓
Xk � µXk

�Xk

◆2

n

2nn
f(C;n) = C

n
2 �1e�

C
2 /2

n
2 �

⇣n
2

⌘
Variable
Parameters
Law
Mean Variance:

:
:
:
:

,
�

FWHM
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18 Convergence

p small, k ⌧ n

n & 30

n & 50

� & 25

Binomial distribution

Chi-square distribution

Poisson distribution

Normal distribution
P (k;n, p) =

n!

k!(n� k)!
pk(1� p)n�k

µ = np � =
p
np(1� p)

P (k;�) =
e���k

k!

µ = � � =
p
�

f(x;µ,�) =
1

�

p
2⇡

e

� (x�µ)2

2�2

� = �µ = µ

f(C;n) = C
n
2 �1e�

C
2 /2

n
2 �

⇣n
2

⌘

µ = n � =
p
2n

np = �
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19 Multidimensional PDF
• Random variables can be generalized to random vectors:

~X = (X1, X2, ..., Xn)

f(~x)d~x = f(x1, x2, ..., xn)dx1dx2...dxn

= P (x1 < X1 < x1 + dx1 and x2 < X2 < x2 + dx2...

...and xn < Xn < xn + dxn)

P (a < X < b and c < Y < d) =

Z b

a
dx

Z d

c
dy f(x, y)

fX(x)dx = P (x < X < x+ dx and �1 < Y < +1) =

Z
(f(x, y)dx)dy

fX(x) =

Z
f(x, y)dy

• The probability density function becomes:

and

• Marginal density: probability of only one of the component
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20 Multidimensional PDF

f(x|y) / f(x, y)
Z

f(x|y)dx = 1

f(x|y) = f(x, y)R
f(x, y)dx

=
f(x, y)

fY (y)

Y = y0• For a fixed value of              :
f(x|y0)dx x < X < x+ dx

Y = y0= “Probability of                                 knowing that               ”
f(x, y)Xis a conditional density for      . It is proportional to

Therefore:

• The two random variables     and     are independent if all events of the form 
x < X < x+ dx

are independent from y < Y < y + dy
X Y

f(x|y) = fX(x) f(y|x) = fY (y) f(x, y) = fX(x).fY (y)henceand

• For probability density functions, Bayes’ theorem becomes:

f(y|x) = f(x|y)fY (y)
fX(x)

=
f(x|y)fY (y)R
f(x|y)fY (y)dy
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21 Covariance and correlation

⇢ = �0.5 ⇢ = 0 ⇢ = 0.9

⇢ = 0

Cov(X,Y ) =

ZZ
(x� µX)(y � µY )f(x, y)dxdy = ⇢�X�Y = µXY � µXµY

Cov(X,Y ) =

1

n

nX

i=1

(xi � µX)(yi � µY )

⇢ =

Cov(X,Y )

�X�Y

⇢ = 0

(X,Y )• A random vector           can be treated as 2 separate variables marginal densities
µX µY �Y�Xmean and standard deviation for each variable: , , ,

• These quantities do not take into account correlations between the variables:

X Y• Generalized measure of dispersion: Covariance of     and

• Correlation: Uncorrelated variables: 

Independent Uncorrelated
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22 Decorrelation

⌃ij = Cov(Xi, Xj)

2

6664

�2
1 ⇢12�1�2 . . . ⇢1n�1�n

⇢12�1�2 �2
2 . . . ⇢2n�2�n

...
...

. . .
...

⇢1n�1�n ⇢2n�2�n . . . �2
n

3

7775⌃ =

2

6664

�
02
1 0 . . . 0
0 �

02
2 . . . 0

...
...

. . .
...

0 0 . . . �
02
n

3

7775⌃0 = = B�1⌃B Y = BXwith

Xin• Covariance matrix for    variables      :

⌃• For uncorrelated variables     is diagonal

• Matrix real and symmetric: ⌃ can be diagonalized
YinDefinition of    new uncorrelated variables 

�
02
i ⌃are the eigenvalues of 

B contains the orthonormal eigenvectors

�0Yi• The      are the principal components. Sorted from the largest 
to the smallest     , they allow dimensional reduction
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23 Regression

w(a, b) =

ZZ
(y � ax� b)2f(x, y)dxdy

 
=

1

n

X

i

(yi � axi � b)2
!

8
<

:

@w
@a = 0 =

RR
x(y � ax� b)f(x, y)dxdy

@w
@b = 0 =

RR
(y � ax� b)f(x, y)dxdy

8
<

:

a(�2
X � µ2

X) + bµX = ⇢�X�Y + µXµY

aµX + b = µY

• Measure of location:
(µX, µY)A point:

A curve: line which is the closest to the points            linear regression

y = ax+ b• Minimizing the dispersion between the curve “                       ” and the distribution

Let:

8
<

:

a = ⇢�Y
�X

b = µY � ⇢�Y
�X

µX

⇢ = 1Fully correlated
⇢ = �1Fully anti-correlated

Y = aX+ bThen

8
<

:

a(�2
X � µ2

X) + bµX = ⇢�X�Y + µXµY

aµX + b = µY
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24 Multidimensional PDFs

X
pi = 1

X
Ki = np1, p2, ...pS

nK1,K2, ...KS• Multinomial distribution: randomly choosing                        objects within a finite set of    ,  
with a fixed drawing probability for each category                        with                and   

n, p1, p2, ...pS

µi = npi

�2
i = npi(1� pi) Cov(Ki,Kj) = �npipj

Parameters

Mean
Variance

:

P (~k;n, ~p) =
n!

k1!k2!...kS!
pk1
1 pk2

2 ...pkS
SLaw :

:
:

S = 2Note: Variables are not independent. The binomial corresponds to           but has 
only one independent variable 

• Multinormal distribution: 

f(~x; ~µ,⌃) =
1p
2⇡|⌃|

e

� 1
2 (~x�~µ)T⌃�1(~x�~µ)Law :

~µ ⌃Parameters : ,

f(~x; ~µ,⌃) =
Y 1

�i

p
2⇡

e

� (x
i

�µ

i

)2

2�2
iIf uncorrelated:

Independent Uncorrelated
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25 Sum of random variables

S =
nX

i=1

Xi

�

2
S =

Z  nX

i=1

xi � µXi

!2

f(x1, ..., xn)dx1...dxn

=

nX

i=1

�2
Xi

+ 2

X

i

X

j<i

Cov(Xi,Xj)

S• The sum of several random variable is a new random variable

• Assuming the mean and variance of each variable exist:
SMean value of    : 

SVariance of    : 

The mean is an additive quantity

µS =

Z  nX

i=1

xi

!
f(x1, ..., xn)dx1...dxn =

nX

i=1

Z
xifXi(xi)dxi =

nX

i=1

µi

�2
S =

nX

i=1

�2
XiFor uncorrelated variables, the variance is an additive quantity

used for error combinations
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26 Sum of random variables

�S(t) =

Z
fS(s)e

ist

ds =

Z
f

~X(~x)e
it

P
xi
d~x

�S(t) =
YZ

fXk(xk

)eitxk
dx

k

=
Y

�Xi(t)

fS = fX1 ⇤ fX2 ⇤ ... ⇤ fXn

� = �1 + �2

n = n1 + n2

fS(s)S• Probability density function of    :
• Using the characteristic function:

For independent variables:

The characteristic function factorizes.

• The PDF is the Fourier transform of the characteristic function, therefore:

The PDF of the sum of random variables is the convolution of the individual PDFs

Sum of Normal variables Normal
�1 �2Sum of Poisson variables (      and      ) Poisson with

n1 n2Sum of Chi-2 variables (      and      ) Khi-2 with
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27 Sum of independent variables
• Weak law of large numbers

µ �2
n nSample of size     = realization of     independent variables with the same 

distribution (mean    , variance      )

M =
S

n
=

1

n

X
XiThe sample mean is a realization of

µM = µMMean value of      : �2
M = �2/nMVariance of      :

• Central limit theorem

n µi �2
iindependent random variables of mean       and variance 

C =
1p
n

X Xi � µi

�i
Sum of the reduced variables:

CThe PDF of      converges to a reduced normal distribution:

fC(c) �����!
n!+1

1p
2⇡

e�
c2

2

The sum of many random fluctuations is normally distributed
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Gaussian

X1 X1 + X2p
2

X1 + X2 + X3p
3

X1 + X2 + X3 + X4 + X5p
5

Gaussian

Gaussian Gaussian

28 Central limit theorem
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29 Dispersion and uncertainty

�✓ = ↵�✓

• Any measure (or combination of measures) is a realization of a random variable.

✓Measured value:
✓0True value:

✓0✓• The uncertainty quantifies the difference between     and       :

Measure of dispersion

Postulate: Absolute error always positive

• Usually one differentiates:

Statistical errors: due to the measurement PDF
Systematic errors or bias: fixed but unknown deviation (equipment, assumptions, …)
Systematic errors can be seen as statistical error in a set of similar experiments
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30 Error sources

�O = ↵�O

�S = ↵�S

�P = ↵�P

9
=

; �2

tot

= (↵�
tot

)2 = ↵2(�2

O + �2

S + �2

P ) = �2

O +�2

S +�2

P

�OObservation error: �SScaling error: �PPosition error:

✓ = ✓0 + �O + �S + �PMeasured value:
�2
i�i• Each      is a realization of a random variable of mean 0 and variance

For uncorrelated error sources:

↵• Choice for     :
Many sources of error          central limit theorem          normal distribution

↵ = 1 gives (approximately) a 68% confidence interval
↵ = 2 gives a 95% confidence interval
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31 Error propagation

f(x+�x) = f(x) +
df

dx

�x+
1

2

d

2
f

dx

2
�x

2

f(x��x) = f(x)� df

dx

�x+
1

2

d

2
f

dx

2
�x

2

�f =
1

2
|f(x+�x)� f(x��x)| = df

dx

�x

f(x)
f

0(x) =
df

dx

�x

x

�f

�f

�x

x±�x
• Measure:

f(x) �! �f

• Compute:                                 ?

Assuming small errors and using 
the Taylor expansion:
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32 Error propagation

ym

zm = f(xm, ym) @f

@x

=
df(x, ym)

dx

2�
x

f Curve z = f(x, ym) fixed ym

xm

Surface z = f(x, y)

2�
x

2�y

�
x

f =

����
@f

@x

�����x �yf =

����
@f

@y

�����y

�f

2 =
X

i

✓
@f

@xi
�xi

◆2

�f =

����
@f

@x

�����x+

����
@f

@y

�����y �f =

����

����
@f

@x

�����x�
����
@f

@y

�����y

����

x±�x y ±�y• Measure: ,

f(x, y, ...) �f• Compute:                                     ?
Method: Treat the effect of each 
variable as separate error sources

and

Then:

�f

2 =
X

i

✓
@f

@x

i

�x

i

◆2

+ 2
X

i,j<i

⇢

xixj

����
@f

@x

i

@f

@x

j

�����x

i

�x

j

Uncorrelated Correlated Anticorrelated

�f

2 = �
x

f

2 +�
y

f

2 + 2⇢
xy

�
x

f�
y

f =

✓
@f

@x

�x

◆2

+

✓
@f

@y

�y

◆2

+ 2⇢
xy

@f

@x

@f

@y

�x�y
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33 Parametric estimation

{xi}✓• Estimating a parameter      from a finite sample

S = f({xi})• Statistic: a function

✓Any statistic can be considered as an estimator of 
To be a good estimator it needs to satisfy:

Consistency: limit of the estimator for an infinite sample

Bias: difference between the estimator and the true value

Efficiency: speed of convergence

Robustness: sensitivity to statistical fluctuations

• A good estimator should at least be consistent and asymptotically unbiased

• Efficient / Unbiased / Robust often contradict each others
Need to make a choice for a given situation
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P(|✓̂ � ✓| < ✏) �����!
n!+1

1, 8✏

34 Bias and consistency
• As the sample is a set of realizations of random variables (or one vector variable), 

so is the estimator:

✓̂ ⇥̂is a realization of

It has a mean, a variance, …, and a probability density function

b(✓̂) = E[⇥̂� ✓0] = µ⇥̂ � ✓0• Bias: characterize the mean value of the estimator

b(✓̂) = 0Unbiased estimator:
b(✓̂) �����!

n!+1
0Asymptotically unbiased:

In practice, if the estimator is asymptotically unbiased �⇥̂ �����!
n!+1

0

Biased Asymptotically unbiased Unbiased

• Consistency: formally P(|✓̂�✓|>✏)�����! n!+1
0,8✏
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35 Efficiency

�⇥̂ � 1

E
h�

@lnL
@✓

�2i
 
=

�1

E
⇥
@2lnL
@✓2

⇤
!

• For any unbiased estimator of     , the variance cannot exceed (Cramer-Rao bound):✓

• The efficiency of a convergent estimator is given by its variance.

An efficient estimator reaches the Cramer-Rao bound (at least asymptotically)
Minimal variance estimator

• The minimal variance estimator will often be biased, asymptotically unbiased

�⇥̂ � 1

E
h�

@lnL
@✓

�2i
 
=

�1

E
⇥
@2lnL
@✓2

⇤
!
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36 Empirical estimator

µ̂ =
1

n

X
xi µµ̂ = E[µ̂] = µ �2

µ̂ = E[(µ̂� µ)2] =
�2

n

ŝ

2 =
1

n

X

i

(xi � µ̂)2 =

 
1

n

X

i

(xi � µ)2
!

� (µ̂� µ)2

E[ŝ2] =

 
1

n

X

i

�2

!
� �2

µ̂ = �2 � �2

n
=

n� 1

n
�2

�2
�̂2 =

�4

n� 1

✓
n� 1

n
�2 + 2

◆
�! 2�4

n

• Sample mean is a good estimator of the population mean
weak law of large numbers: convergent, unbiased

• Sample variance as an estimator of the population variance:

biased, asymptotically unbiased

unbiased variance estimator: �̂

2 =
1

n� 1

X

i

(xi � µ̂)2

Variance of the estimator (convergence):
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37 Errors on estimators

Uncertainty Estimator standard deviation

�̂

2 =
1

n� 1

X

i

(xi � µ̂)2 �2
�̂2 ⇡ 2�4

n

µ̂±�µ̂ �̂ ±��̂

�̂ =
p
�̂2• Use an estimator of standard deviation: (biased !)

µ̂ =
1

n

X
xi �2

µ̂ =
�2

n
• Mean: �µ̂ =

r
�̂2

n

• Variance: ��̂2 =

r
2

n
�̂2,

,

• Central-Limit theorem            empirical estimators of mean and variance are 
normally distributed for large enough samples

, define 68% confidence intervals
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38 Likelihood function

L(✓) =
Y

i

k(xi, ✓) =
Y

i

f(xi; ✓)

f(x|✓) = f(x; ✓)for Bayesian f(✓|x) = L(✓)
�Z

L(✓)d✓for Bayesian

n XFor a sample:     independent realizations of the same variable

f(x; ✓) = k(x, ✓0)Z
f(x; ✓)dx = 1

L(✓) = k(u, ✓)Z
L(✓)d✓ =???

k(x, ✓)Generic function

x

: random variable(s)
✓: parameter(s)

Probability density function Likelihood function

✓ = ✓0fix              (true value) x = ufix             (one realization 
of the random variable)
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39 Maximum likelihood

L(✓) =
Y

i

e

�i(✓)
�

i

(✓)xi

x

i

!

@L
@✓

���
✓=✓̂

= 0

{xi}• Let a sample of measurements: 

✓
The analytical form of the density is known and depends on 
several unknown parameters

�i(✓)For example: Event counting follows a Poisson distribution with a parameter         
depending on the physics.

✓• An estimator of the parameters     is given by the position of the 
maximum of the likelihood function

Parameter values which maximize the probability to get the observed results

Note: system of equations for several parameters
�lnLNote: minimizing             often simplify the expression
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40 Properties of MLE

f(~̂✓; ~✓,⌃) =
1p
2⇡|⌃|

e�
1
2 (

~̂✓�~✓)T⌃�1(~̂✓�~✓) ⌃�1
ij = �E


@lnL
@✓i

@lnL
@✓j

�

p� value =

Z +1

�2lnL(✓̂)
f�2(x; ndf)dx

• Mostly asymptotic properties: valid for large samples, often assumed in any 
case for lack of better information

Asymptotically unbiased

Asymptotically efficient (reaches the Cramer-Rao bound)

Asymptotically normally distributed

Multinormal law with covariance given by a generalization of the CR bound:

�2lnL(✓̂)• Goodness of fit: The value of                  is Chi-2 distributed with
ndf = sample size� number of parameters

Probability of getting 
a worse agreement
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41 Errors on MLE

f(~̂✓; ~✓,⌃) =
1p
2⇡|⌃|

e�
1
2 (

~̂✓�~✓)T⌃�1(~̂✓�~✓) ⌃�1
ij = �E


@lnL
@✓i

@lnL
@✓j

�

�lnL = lnL(✓̂)� lnL(✓) = 1

2

X

i,j

⌃�1
ij (✓i � ✓̂i)(✓j � ✓̂j) +O(✓3)

�lnL = �(n✓,↵) with ↵ =

Z 2�

0
f�2(x;n✓)dx

↵
n✓

68.3
95.4

99.7

0.5

2

4.5

21 3

1.15

3.09
5.92

1.76

4.01
7.08

• Errors on the parameters given by the covariance matrix

�✓ = �̂✓̂ =

s
�1

@2lnL
@✓2

• For one parameter, 68% confidence interval:
only one realization of 
the estimator: empirical 
mean of 1 value

• More generally:

Confidence contours are defined by the equation:

↵n✓
�Values of     for different number 

parameters       and confidence levels
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42 Least squares

K

2(✓) =
X

i

✓
yi � f(xi, ✓)

�yi

◆2

w(✓) =
X

i

(yi � f(xi, ✓))
2 @w

@✓i
= 0

@K2

@✓i
= 0

@L
@✓

= 0 , �2
@lnL
@✓

=
@K2

@✓
= 0

yi(xi, yi)• Set of measurements              with uncertainties on
y = f(x, ✓)Theoretical law given by:

• Naive approach: use regression

• Reweight each term by its associated error:

�yif(xi, ✓)
yi• Maximum likelihood assumes that each      is normally distributed with a mean 

equal to               and a standard deviation given by

L(✓) =
Y

i

1p
2⇡�yi

e
� 1

2

⇣
y

i

�f(x
i

,✓)
�y

i

⌘2

• The likelihood is then

Least squares or Chi-2 fit is the maximum 
likelihood estimator for Gaussian errors

K

2(~✓) =
1

2
(~y � ~

f(x, ~✓))T⌃�1(~y � ~

f(x, ~✓))• Generic case with correlations:
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43 Example: fitting a line
K2(a) = Aa2 � 2Ba+C = �2lnL

f(x) = ax

• For

A =
X

i

x

2
i

�y

2
i

B =
X

i

xiyi

�y

2
i

C =
X

i

y2i
�y2i

, ,

@K2

@a
= 2Aa� 2B = 0 â =

B

A

@2K2

@a2
= 2A =

2

�2
a

�â = �a =
1p
A
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44 Example: fitting a line

K2(a, b) = Aa2 + Bb2 + 2Cab� 2Da� 2Eb+ F = �2lnL

@2K2

@a2 = 2A = 2⌃�1
11

@2K2

@b2 = 2B = 2⌃�1
22

@2K2

@a@b = 2C = 2⌃�1
12

9
>>>>>=

>>>>>;

@K2

@a = 2Aa+ 2Cb� 2D = 0

@K2

@b = 2Ca+ 2Bb� 2E = 0

9
=

;

A =
X

i

x

2
i

�y

2
i

B =
X

i

1

�y2i
C =

X

i

xi

�y

2
i

D =
X

i

xiyi

�y

2
i

E =
X

i

yi
�y2i

F =
X

i

y2i
�y2i

, , , , ,

f(x) = ax+ b

• For

â =
BD� EC

AB� C2
b̂ =

AE� BC

AB� C2
,

⌃�1 =


A C
C B

�
⌃ =

1

AB� C2


B �C
�C A

�

�â = �a =

r
B

AB� C2 �b̂ = �b =

r
A

AB� C2
,
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45 Example: fitting a line

a b• Two dimensional error contours on     and

parameter    , slopea

pa
ra

m
et

er
   

 , 
in

te
rc

ep
t

b

contour at 68.3%
contour at 95.4%
contour at 99.7%
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46 Non-parametric estimation

• Directly estimating the probability density function

Likelihood ratio discriminant

Separating power of variables

Data / Monte Carlo agreement

…

{xi}, i = 1...n• Frequency table: For a sample

Ck = [ak, ak+1[
nk Ck

1. Define successive invervals (bins) 
2. Count the number of events       in 

h(x) = nk if x 2 Ck• Histogram: Graphical representation of the frequency table
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47 Histogram

N/Z for stable  heavy nuclei

1.321, 1.357, 1.392, 1.410, 1.428, 1.446, 1.464, 1.421, 
1.438, 1.344, 1.379, 1.413, 1.448, 1.389, 1.366, 1.383, 
1.400, 1.416, 1.433, 1.466, 1.500, 1.322, 1.370, 1.387, 
1.403, 1.419, 1.451, 1.483, 1.396, 1.428, 1.375, 1.406, 
1.421, 1.437, 1.453, 1.468, 1.500, 1.446, 1.363, 1.393, 
1.424, 1.439, 1.454, 1.469, 1.484, 1.462, 1.382, 1.411, 
1.441, 1.455, 1.470, 1.500, 1.449, 1.400, 1.428, 1.442, 
1.457, 1.471, 1.485, 1.514, 1.464, 1.478, 1.416, 1.444, 
1.458, 1.472, 1.486, 1.500, 1.465, 1.479, 1.432, 1.459, 
1.472, 1.486, 1.513, 1.466, 1.493, 1.421, 1.447, 1.460, 
1.473, 1.486, 1.500, 1.526, 1.480, 1.506, 1.435, 1.461, 
1.487, 1.500, 1.512, 1.538, 1.493, 1.450, 1.475, 1.500, 
1.512, 1.525, 1.550, 1.506, 1.530, 1.487, 1.512, 1.524, 
1.536, 1.518, 1.577, 1.554, 1.586, 1.586

       Bin Number of N/Z Frequency        Bin Number of N/Z Frequency 
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48 Histogram as PDF estimator

µnk = npk �2
nk

= npk(1� pk) ⇡ µnk
pk ⌧ 1

Cov(nk, nr) = �npkpr ⇡ 0

pk ⌧ 1

lim
n!+1

nk

n
=

µk

n
= pk pk =

Z

Ck

fX(x)dx ⇡ �f(xc) ) lim
�!0

pk

�

= f(x)

nk• Statistical description:       are multinomial random variables

n =
X

k

nk pk = P(x 2 Ck) =

Z

Ck

fX(x)dx Parameters:

 For a large sample: � For small classes (width    ):

Finally: f(x) = lim
n!+1

1

n�

h(x)

� ! 0

• Each bin can be described by a Poisson density

• The histogram is an estimator of the probability density function

�nk =
q

�̂2
nk

=
p
µ̂nk =

p
nknk1�The      error on       is then:
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49 Confidence interval

[a, b]
• For a random variable, a confidence interval with confidence level    , 

is any interval            such that:
↵

P(X 2 [a, b]) =

Z b

a
fX(x)dx = ↵

Probability of finding a 
realization inside the interval

• Generalization of the concept of uncertainty: 
interval that contains the true value with a given probability

• For Bayesians: the posterior density is the probability density of the true value.

P(✓ 2 [a, b]) = ↵It can be used to estimate an interval:

[A,B][a, b]
• No such thing for a Frequentist: the interval itself becomes the random 

variable           is a realization of 

P(A < ✓ and B > ✓) = ↵ ✓independently of 
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Z µ

a
f(x)dx =

Z b

µ
f(x)dx =

↵

2

Z b

a
f(x)dx = ↵

f(x) > f(y) for x 2 [a, b] and y /2 [a, b]

[µ� a, µ+ a]
Z µ+a

µ�a
f(x)dx = ↵

• Mean centered, symetric interval:

[a, b]• Mean centered, probability symetric interval:

[a, b]• Highest probability density (HDP) interval:

50 Confidence interval
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51 Confidence Belt

P
⇣
⌦�1(✓̂) < ✓ < ⌅�1(✓̂)

⌘
= 1� P

⇣
⌅�1(✓̂) < ✓

⌘
� P

⇣
⌦�1(✓̂) > ✓

⌘

= 1� P
⇣
✓̂ < ⌅(✓)

⌘
� P

⇣
✓̂ > ⌦(✓)

⌘
= ↵

✓✓̂• To build a frequentist interval for an estimator     of    :

(1� ↵)/2✓̂ < ⌅(✓) for a fraction                   of the pseudo-experiments

✓̂ > ⌦(✓) (1� ↵)/2for a fraction                   of the pseudo-experiments
↵These 2 curves are the confidence belt for a confidence level

✓̂
✓Make pseudo-experiments for several values of     and compute the 

estimator     for each (Monte Carlo sampling of the estimator PDF)
1.

⌦(✓)⌅(✓)✓For each    , determine          and           such that:2.

3. [⌦�1(✓̂),⌅�1(✓̂)]Inverse these functions. The interval                              satisfies:

�Confidence belt for a Poisson parameter    estimated 
with the empirical mean of 3 realizations (68% CL)
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52 Dealing with systematics

• The variance of the estimator only measures the statistical uncertainty.

• Often, we will have to deal with parameters whose value is known 
with limit precision.

L(✓, ⌫) ⌫ = ⌫0 ±�⌫ or ⌫0
+�⌫+

��⌫�

• The likelihood function becomes:

The known parameters      are nuisance parameters⌫

Systematic uncertainties

with
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53 Bayesian inference

f(✓|x) =
Z

f(✓, ⌫|x)d⌫ =

R
f(x|✓, ⌫)⇡(✓)⇡(⌫)d⌫RR
f(x|✓, ⌫)⇡(✓)⇡(⌫)d✓d⌫

f(✓, ⌫|x) = f(x|✓, ⌫)⇡(✓)⇡(⌫)RR
f(x|✓, ⌫)⇡(✓)⇡(⌫)d✓d⌫

⇡(⌫)• In Bayesian statistics, nuisance parameters are dealt with by assigning them a prior          .

�⌫0
⌫0• Usually a multinormal law is used with mean       and covariance matrix estimated 

from          (+ correlation if needed)

• The final posterior distribution is obtained by marginalization over the nuisance parameters:
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54 Profile Likelihood
• No true frequentist way to add systematic effects. Popular method of the day: profiling

• Deal with nuisance parameters as realization of random variables:
L(✓, ⌫) �! L0(✓, ⌫)G(⌫)extend the likelihood:

G(⌫)•           is the likelihood of the new parameters (identical to prior)

PL(✓)
✓• For each value of    , maximize the likelihood with respect to nuisance: 

profile likelihood

PL(✓)•            has the same statistical asymptotical properties than the regular likelihood
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55 Statistical tests

• Statistical tests aim at:

{xi}Checking the compatibility of a dataset         with a given distribution

{xi} {yi}Checking the compatibility of two datasets        ,         : are they issued 
from the same distribution ?

Comparing different hypothesis: background VS signal + background

• In every case:

Build a statistic that quantifies the agreement with the hypothesis

Convert it into a probability of compatibility/incompatibility: p-value
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56 Pearson test

• Test for binned data: use the Poisson limit of the histogram
niCikSort the sample into    bins      :

pi =

Z

Ci

f(x)dxCompute the probability of this class:

For each bin, the test statistics compares the deviation of the observation 
from the expected mean to the theoretical standard deviation.

X
ni = n

k � 1�2
•        follows (asymptotically) a Chi-2 law with            degrees of freedom 

(one constraint                 )

p� value =

Z +1

�2

f�2(x; k � 1)dx• p-value: probability of doing worse:

�2/(k � 1) ⇠ 1For a “good” agreement:

�2 2 (k � 1)±
p
2(k � 1)More precisely: 1�(       interval ~ 68% CL)

�2 =
X

bins i

(ni � npi)2

npi
Poisson variance

Poisson meanData
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57 Kolmogorov-Smirnov test

Dn = sup|FS(x)� F (x)|
x

P(Dn > �
p
n) = 2

X

r

(�1)r�1e�2r2z2

• Test for unbinned data: compare the sample cumulative density function to the tested one

• Sample PDF (ordered sample)

fS(x) =
1

n

X

i

�(x� i)
FS(x) =

8
<

:

0 x < x0
k
n xk  x < xk+1

1 x > xn

• The Kolmogorov statistic is the largest deviation:

• The test distribution has been computed by Kolmogorov:

[0,�] Dndefines a confidence interval for

� = 0.9584/
p
n for 68.3% CL � = 1.3754/

p
n for 95.4% CL
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58 Example

Dn = 0.069

p� value = 0.0617

1� : [0, 0.0875]

0.008, 0.036, 0.112, 0.115, 0.133, 0.178, 0.189, 0.238, 0.274, 0.323, 0.364, 0.386, 0.406, 0.409, 0.418, 0.421, 0.423, 0.455, 
0.459, 0.496, 0.519, 0.522, 0.534, 0.582, 0.606, 0.624, 0.649, 0.687, 0.689, 0.764, 0.768, 0.774, 0.825, 0.843, 0.921, 0.987, 
0.992, 1.003, 1.004, 1.015, 1.034, 1.064, 1.112, 1.159, 1.163, 1.208, 1.253, 1.287, 1.317, 1.320, 1.333, 1.412, 1.421, 1.438, 
1.574, 1.719, 1.769, 1.830, 1.853, 1.930, 2.041, 2.053, 2.119, 2.146, 2.167, 2.237, 2.243, 2.249, 2.318, 2.325, 2.349, 2.372, 
2.465, 2.497, 2.553, 2.562, 2.616, 2.739, 2.851, 3.029, 3.327, 3.335, 3.390, 3.447, 3.473, 3.568, 3.627, 3.718, 3.720, 3.814, 
3.854, 3.929, 4.038, 4.065, 4.089, 4.177, 4.357, 4.403, 4.514, 4.771, 4.809, 4.827, 5.086, 5.191, 5.928, 5.952, 5.968, 6.222, 
6.556, 6.670, 7.673, 8.071, 8.165, 8.181, 8.383, 8.557, 8.606, 9.032, 10.482, 14.174

f(x) = �e

��x

, � = 0.4• Test compatibility with an exponential law:
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